A048549
a(n+1) is next smallest prime beginning with a(n), initial prime is 2.
Original entry on oeis.org
2, 23, 233, 2333, 23333, 2333321, 233332117, 2333321173, 233332117313, 23333211731399, 2333321173139903, 2333321173139903173, 23333211731399031733, 2333321173139903173301, 2333321173139903173301021
Offset: 1
Similar to but different from
A069603.
-
b = 10; s = {{2}};
Do[NestWhile[# + 1 &, 0, ! (PrimeQ[FromDigits[tmp = Join[Last[s], (nn = #;
IntegerDigits[nn - Sum[b^n, {n, l = NestWhile[# + 1 &, 1, ! (nn - (Sum[b^n, {n, #}]) < 0) &] - 1}], b, l + 1])], b]]) &]; AppendTo[s, tmp], {20}]; Map[FromDigits, s] (* Peter J. C. Moses, Aug 06 2015 *)
A048552
a(n+1) is next smallest prime beginning with a(n), initial prime is a(0) = 7.
Original entry on oeis.org
7, 71, 719, 7193, 71933, 719333, 71933317, 719333177, 71933317711, 7193331771103, 71933317711039, 7193331771103939, 719333177110393913, 7193331771103939133, 719333177110393913323, 71933317711039391332309, 719333177110393913323097, 719333177110393913323097047
Offset: 0
-
f:= proc(n) option remember; local q,d,v;
q:=procname(n-1);
for d from 1 do
v:= nextprime(q*10^d);
if v < (q+1)*10^d then return v fi
od
end proc:
f(0):= 7:
map(f, [$0..20]); # Robert Israel, Jan 26 2020
-
Nest[Function[{a, n}, Append[#, Catch@ Do[Do[If[PrimeQ@ #, Throw@ #; Break[], #] &@ FromDigits[n~Join~PadLeft[IntegerDigits[(5 j - 4 + Mod[3 j + 2, 4])/2], i]], {j, 4*10^(i - 1)}], {i, Infinity}]]] @@ {#, IntegerDigits[#[[-1]] ]} &, {7}, 17] (* Michael De Vlieger, Jan 26 2020 *)
-
next_A048552(p)=for(i=1,oo,my(q=nextprime(p*=10));q-p>10^i||return(q))
A048552(n,p=7)=vector(n,i,i>1&&p=next_A048552(p);p) \\ M. F. Hasler, Jan 26 2020
A048550
a(n+1) is the next smallest prime beginning with a(n), initial prime is 3.
Original entry on oeis.org
3, 31, 311, 3119, 31193, 3119309, 31193093, 311930933, 31193093317, 311930933179, 3119309331797, 311930933179703, 31193093317970371, 3119309331797037107, 311930933179703710759, 31193093317970371075907
Offset: 0
-
f:= proc(n) local d,a;
for d from 1 do
for a from 10^d*n+1 by 2 to 10^d*(n+1) do
if isprime(a) then return a fi
od od
end proc:
R:= 3: x:= 3:
for i from 2 to 30 do
x:= f(x);
R:= R, x;
od:
R; # Robert Israel, Dec 13 2023
A236527
Primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime, starting with 3.
Original entry on oeis.org
3, 31, 311, 3119, 31193, 3119317, 31193171, 311931713, 3119317139, 311931713939, 31193171393933, 3119317139393353, 31193171393933531, 3119317139393353121, 311931713939335312127, 311931713939335312127113, 31193171393933531212711399, 31193171393933531212711399123
Offset: 1
a(1) = 3 by definition.
a(2) is the next smallest prime beginning with 3, so a(2) = 31.
a(3) is the next smallest prime beginning with 31, so a(3) = 311.
-
A069605[1] = 3; A236527[1] = 3; A069605[n_] := A069605[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits[Flatten[Append[c, IntegerDigits[k]]]]], k += 2]; k]; A236527[n_] := A236527[n] = FromDigits[Flatten[IntegerDigits[A236527[n - 1]], IntegerDigits[A069605[n]]]]; Table[A236527[n], {n, 20}] (* Alonso del Arte, Jan 28 2014 based on Robert G. Wilson v's program for A069605 *)
nxt[n_]:=Module[{s=1},While[CompositeQ[n*10^IntegerLength[s]+s],s+=2];n*10^IntegerLength[s]+s]; NestList[nxt,3,20] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2020 *)
-
import sympy
from sympy import isprime
def b(x):
num = str(x)
n = 1
while n < 10**3:
new_num = str(x) + str(n)
if isprime(int(new_num)):
print(int(new_num))
x = new_num
n = 1
else:
n += 1
b(3)
A236672
Start with 9; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
Original entry on oeis.org
9, 97, 971, 9719, 971917, 97191713, 9719171333, 971917133323, 9719171333237, 971917133323777, 97191713332377731, 9719171333237773159, 971917133323777315951, 97191713332377731595127, 971917133323777315951277, 971917133323777315951277269
Offset: 1
a(1) = 9 by definition.
a(2) is the next smallest prime beginning with 9, so a(2) = 97.
a(3) is the next smallest prime beginning with 97, so a(3) = 971.
-
R:= 9: x:= 9:
for i from 2 to 20 do
for y from 1 by 2 do
z:= x*10^(1+ilog10(y)) + y;
if isprime(z) then
R:= R,z; x:= z; break
fi
od od:
R; # Robert Israel, Nov 22 2023
-
next[p_]:=Module[{i=1,q},While[!PrimeQ[q=10^IntegerLength[i]p+i],i+=2];q];
NestList[next,9,15] (* Paolo Xausa, Nov 23 2023 *)
-
import sympy
from sympy import isprime
def b(x):
num = str(x)
n = 1
while n < 10**3:
new_num = str(x) + str(n)
if isprime(int(new_num)):
print(int(new_num))
x = new_num
n = 1
else:
n += 1
b(9)
A236528
Start with 4; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
Original entry on oeis.org
4, 41, 419, 41911, 4191119, 41911193, 419111933, 41911193341, 4191119334151, 419111933415151, 41911193341515187, 4191119334151518719, 419111933415151871963, 41911193341515187196323, 4191119334151518719632313, 419111933415151871963231329
Offset: 1
a(1) = 4 by definition.
a(2) is the next smallest prime beginning with 4, so a(2) = 41.
a(3) is the next smallest prime beginning with 41, so a(3) = 419.
...and so on.
-
NestList[Module[{k=1},While[!PrimeQ[#*10^IntegerLength[k]+k],k+=2];#*10^IntegerLength[k]+ k]&,4,20] (* Harvey P. Dale, Jul 20 2024 *)
-
import sympy
from sympy import isprime
def b(x):
num = str(x)
n = 1
while n < 10**3:
new_num = str(x) + str(n)
if isprime(int(new_num)):
print(int(new_num))
x = new_num
n = 1
else:
n += 1
b(4)
Original entry on oeis.org
5, 53, 5323, 53231, 532313, 5323139, 532313921, 5323139219, 532313921921, 53231392192123, 5323139219212343, 53231392192123433, 5323139219212343323, 53231392192123433237, 5323139219212343323721, 532313921921234332372189, 53231392192123433237218937, 5323139219212343323721893721
Offset: 1
a(1) = 5.
a(2) is the next smallest prime that begins with 5, so a(2) = 53.
a(3) is the next smallest prime that begins with 53, so a(3) = 5323.
...and so on.
A236670
Start with 6; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
Original entry on oeis.org
6, 61, 613, 6131, 613141, 61314119, 6131411917, 61314119171, 6131411917181, 613141191718127, 61314119171812789, 613141191718127893, 61314119171812789379, 6131411917181278937929, 61314119171812789379291, 61314119171812789379291111
Offset: 1
a(1) = 6 by definition.
a(2) is the next smallest prime beginning with 6, so a(2) = 61.
a(3) is the next smallest prime beginning with 61, so a(3) = 613.
A236671
Start with 8; thereafter, primes obtained by concatenating to the end of previous term the next smallest number that will produce a prime.
Original entry on oeis.org
8, 83, 839, 83911, 839117, 83911721, 8391172123, 83911721233, 839117212337, 83911721233729, 839117212337293, 83911721233729399, 839117212337293999, 83911721233729399993, 839117212337293999931, 83911721233729399993139
Offset: 1
a(1) = 8 by definition.
a(2) is the next smallest prime beginning with 8, so a(2) = 83.
a(3) is the next smallest prime beginning with 83, so a(3) = 839.
-
smp[n_]:=Module[{k=1},While[!PrimeQ[n*10^IntegerLength[k]+k],k++];n 10^IntegerLength[k]+ k]; NestList[smp,8,15] (* Harvey P. Dale, Aug 10 2024 *)
-
import sympy
from sympy import isprime
def b(x):
num = str(x)
n = 1
while n < 10**3:
new_num = str(x) + str(n)
if isprime(int(new_num)):
print(int(new_num))
x = new_num
n = 1
else:
n += 1
b(8)
Showing 1-9 of 9 results.
Comments