A261246
Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 2 is soluble.
Original entry on oeis.org
2, 7, 14, 23, 31, 34, 46, 47, 62, 71, 79, 94, 98, 103, 119, 127, 142, 151, 158, 167, 191, 194, 199, 206, 223, 238, 239, 254, 263, 271, 287, 302, 311, 322, 334, 343, 359, 367, 382, 383, 386, 391, 398, 431, 439, 446, 463, 478, 479, 482, 487, 503, 511
Offset: 1
The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)):
[2, [2, 1]], [7, [3, 1]], [14, [4, 1]],
[23, [5, 1]], [31, [39, 7]], [34, [6, 1]],
[46, [156, 23]], [47, [7, 1]], [62, [8, 1]],
[71, [59, 7]], [79, [9, 1]], [94, [1464, 151]],
[98, [10, 1]], [103, [477, 47]], [119, [11, 1]],
[127, [2175, 193]], [142, [12, 1]],
[151, [41571, 3383]], [158, [88, 7]],
[167, [13, 1]], [191, [2999, 217]],
[194, [14, 1]], [199, [127539, 9041]],
[206, [244, 17]], [223, [15, 1]], [238, [108, 7]],
[239, [2489, 161]], ...
- J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978; see Chap. 3.
- V. M. Galkin, O. R. Kozyrev, On an algebraic problem of Ramanujan, pp. 89-94 in Number Theoretic And Algebraic Methods In Computer Science - Proceedings Of The International Conference, Moscow 1993, Ed. Horst G. Zimmer, World Scientific, 31 Aug 1995
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
-
Select[Range[600], False =!= Reduce[x^2 - # y^2 == 2, {x, y}, Integers] &] (* Giovanni Resta, Aug 12 2017 *)
A263012
Odd numbers D not a square that admit proper solutions (x, y) to the Pell equation x^2 - D*y^2 = +8 with both x and y odd.
Original entry on oeis.org
17, 41, 73, 89, 97, 113, 137, 161, 193, 217, 233, 241, 281, 313, 329, 337, 353, 409, 433, 449, 457, 497, 521, 553, 569, 593, 601, 617, 641, 673, 713, 721, 769, 809, 833, 857, 881, 889, 929, 937, 953, 977, 1033, 1049, 1057, 1081, 1097, 1153, 1169, 1193, 1201, 1217, 1241, 1249, 1289, 1321, 1337, 1361, 1409, 1433, 1457, 1481, 1513, 1553, 1561, 1609, 1633, 1649, 1657, 1673, 1697, 1721, 1753, 1777, 1801, 1817, 1841, 1873, 1889, 1913, 1921, 1993
Offset: 1
The first positive fundamental solutions of the first class (x1(n), y1(n)) are (the first entry gives D(n) = a(n)):
[17, (5, 1)], [41, (7, 1)], [73, (9, 1)],
[89, (217, 23)], [97, (69, 7)], [113, (11, 1)], [137, (199, 17)], [161, (13, 1)],
[193, (56445, 4063)], [217, (15, 1)],
[233, (6121, 401)], [241, (46557, 2999)],
[281, (17, 1)], [313, (9567711, 540799)],
[329, (127, 7)], [337, (73829571, 4021753)], ...
The first positive fundamental solutions of the second class (x2(n), y2(n)) are:
[17, (29, 7)], [41, (1223, 191)],
[73, (1040241, 121751)], [89, (9217, 977)],
[97, (3642669, 369857)], [113, (445435, 41903)], [137, (122279, 10447)], [161, (3667, 289)],
[193, (441089445, 31750313)],
[217, (1034361, 70217)], [233, (700801, 45911)], [241, (866477098293, 55814696449)], ...
A261248
Positive fundamental solution y(n) of the generalized Pell equation X^2 - D(n) Y(n) = 2 with D(n) = A261246(n).
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 23, 1, 1, 7, 1, 151, 1, 47, 1, 193, 1, 3383, 7, 1, 217, 1, 9041, 17, 1, 7, 161, 1, 23, 20687, 1, 119, 233, 1, 437071, 617, 1, 7199, 20783, 7, 17, 137, 1, 593, 1, 497, 731153, 1839433, 79, 1, 326471, 7, 2863
Offset: 1
A264354
Even nonsquare D values which admit proper solutions to the Pell equation x^2 - D*y^2 = +8.
Original entry on oeis.org
8, 28, 56, 92, 124, 136, 184, 188, 248, 284, 316, 376, 392, 412, 476, 508, 568, 604, 632, 668, 764, 776, 796, 824, 892, 952, 956, 1016, 1052, 1084, 1148, 1208, 1244, 1288, 1336, 1372, 1436, 1468, 1528, 1532
Offset: 1
The first positive proper fundamental solutions of the first class are, when written as [D(n), (x1(n), y1(n))]:
[8, (4, 1)], [28, (6, 1)], [56, (8, 1)], [92, (10, 1)], [124, (78, 7)], [136, (12, 1)], [184, (312, 23)], ...
The first positive proper fundamental solutions of the second class [D(n), (x2(n), y2(n))] are (if the values for both classes coincide there is only one class):
[8, (4, 1)], [28, (90, 17)], [56, (8, 1)], [92, (470, 49)], [124, (237042, 21287)], [136, (12, 1)], [184, (312, 23)], ...
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New Tork, 1964, p. 206.
A264352
Exceptional even numbers D that do not admit a solution to the Pell equation X^2 - D Y^2 = +2.
Original entry on oeis.org
82, 146, 178, 226, 274, 434, 466, 514, 562, 578, 626, 658, 818, 914, 994, 1042, 1106, 1138, 1202, 1234, 1394, 1426, 1522, 1582, 1618, 1666, 1714, 1778, 1874, 1906, 1918, 2066, 2098, 2162, 2194, 2258, 2306, 2386, 2402, 2434, 2482, 2578, 2642
Offset: 1
A263010
Exceptional odd numbers D that do not admit a solution to the Pell equation X^2 - D Y^2 = +2.
Original entry on oeis.org
791, 799, 943, 1271, 1351, 1631, 1751, 1967, 2159, 2303, 2359, 2567, 3143, 3199, 3503, 3703, 3983, 4063, 4439, 4471, 4559, 4607, 4711, 5047, 5183, 5207, 5359, 5663, 5911, 5983, 6511, 6671, 6839, 7063, 7231, 7663, 7871, 8183, 8407, 8711, 9143, 9271, 9751, 9863, 10183, 10367
Offset: 1
A264438
One-half of the x member of the positive proper fundamental solution (x = x2(n), y = y2(n)) of the second class for the Pell equation x^2 - D(n)*y^2 = +8 for even D(n) = A264354(n).
Original entry on oeis.org
2, 45, 4, 235, 118521, 6, 156, 665, 8, 410581, 1431, 1464, 10, 217061235, 2629, 20578212225, 12, 143681684300109, 88, 4355, 53946009001, 14, 4149148875801021, 244, 6705, 108, 30839304871, 16, 103789115, 78990793279586649, 9775, 2068, 138751721731, 18, 7987764, 2984191388685, 13661, 5246209297401255, 406200, 5142295
Offset: 1
n=2: D(2) = 28, (2*45)^2 - 28*17^2 = +8. The first class solution was (2*3)^2 - 28*1^2 = +8. This is a D case with two classes of proper solutions.
n=3: D(3) = 56, (2*4)^2 - 56*1^2 = +8. The first class has the same solution, therefore this D has only one class of proper solutions.
A264439
The y member of the positive proper fundamental solution (x = x2(n), y = y2(n)) of the second class for the Pell equation x^2 - D(n)*y^2 = +8 for even D(n) = A264354(n).
Original entry on oeis.org
1, 17, 1, 49, 21287, 1, 23, 97, 1, 48727, 161, 151, 1, 21387679, 241, 1826021057, 1, 11692649642023, 7, 337, 3903396217, 1, 294125365483681, 17, 449, 7, 1994828801, 1, 6399911, 4798348971487087, 577, 119, 7867888313, 1, 437071, 161131189369, 721, 273849896195263, 20783, 262759
Offset: 1
n=1: D(1) = 8, (2*2)^2 - 8*1^2 = +8. The first class positive fundamental solution was identical, thus there is only one class of proper solutions for D = 8.
n=5: D(5) = 124, (2*118521)^2 - 124*21287^2 = +8. The first class solution was (2*39)^2 - 124*7^2 = +8. Thus there are two classes, conjugated to each other for this D value.
Showing 1-8 of 8 results.
Comments