A261256 Let S_k denote the sequence of numbers j such that A001222(j) - A001221(j) = k. Then a(n) is the n-th term of S_n.
4, 24, 72, 160, 432, 896, 2592, 5632, 12800, 26624, 61440, 124416, 278528, 622592, 1376256, 2949120, 5971968, 12058624, 25690112, 60817408, 130023424, 262144000, 528482304, 1107296256, 2264924160, 4586471424, 9395240960, 19864223744, 40265318400, 83751862272
Offset: 1
Keywords
Examples
For n = 1, S_1 = {4, 9, 12, 18, 20, 25, ...}, so a(1) = S_1(1) = 4. For n = 2, S_2 = {8, 24, 27, 36, 40, 54, ...}, so a(2) = S_2(2) = 24. For n = 3, S_3 = {16, 48, 72, 80, 81, 108, ...}, so a(3) = S_3(3) = 72. For n = 4, S_4 = {32, 96, 144, 160, 216, 224, ...}, so a(4) = S_4(4) = 160. For n = 5, S_5 = {64, 192, 288, 320, 432, 448, ...}, so a(5) = S_5(5) = 432.
Links
- Charlie Neder, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Haskell
a261256 n = a257851 n (n - 1) -- Reinhard Zumkeller, Nov 29 2015
-
Mathematica
OutSeq = {}; For[i = 1, i <= 16, i++, l = Select[Range[10^2*2^i], PrimeOmega[#] - PrimeNu[#] == i &]; AppendTo[OutSeq, l[[i]]]]; OutSeq
-
PARI
a(n) = {ik = 1; nbk = 0; while (nbk != n, ik++; if (bigomega(ik) == omega(ik) + n, nbk++);); ik;} \\ Michel Marcus, Oct 06 2015
Formula
a(n+1) > 2*a(n).
a(n) >= 2^prime(n) for n < 5.
a(n) = A257851(n,n-1). - Reinhard Zumkeller, Nov 29 2015
a(n) = b(n)*2^(n+1), where b(n) consists of the values of k/2^excess(k) over odd k, sorted in ascending order. In particular, a(n) <= prime(n)*2^(n+1), with equality only when n = 2. - Charlie Neder, Jan 31 2019
Extensions
a(17)-a(21) from Jon E. Schoenfield, Sep 12 2015
More terms from Charlie Neder, Jan 31 2019
Comments