A261359 Pentatope of coefficients in expansion of (1 + x + 2*y + 2*z)^n.
1, 1, 1, 2, 2, 1, 2, 4, 4, 1, 4, 4, 4, 8, 4, 1, 3, 6, 6, 3, 12, 12, 12, 24, 12, 1, 6, 6, 12, 24, 12, 8, 24, 24, 8, 1, 4, 8, 8, 6, 24, 24, 24, 48, 24, 4, 24, 24, 48, 96, 48, 32, 96, 96, 32, 1, 8, 8, 24, 48, 24, 32, 96, 96, 32, 16, 64, 96, 64, 16, 1, 5, 10, 10, 10, 40, 40, 40, 80, 40, 10, 60, 60, 120, 240, 120, 80, 240, 240, 80, 5, 40, 40, 120, 240, 120, 160, 480, 480, 160, 80, 320, 480, 320, 80, 1, 10, 10, 40, 80, 40, 80, 240, 240, 80, 80, 320, 480, 320, 80, 32, 160, 320, 320, 160, 32
Offset: 0
Examples
The 5th slice (n=4) of this 4D simplex starts at a(35). It comprises a 3D tetrahedron of 35 terms whose sum is 1296. It is organized as follows: . . 1 . . 4 . 8 8 . . 6 . 24 24 . 24 48 24 . . 4 . 24 24 . 48 96 48 . 32 96 96 32 . . 1 . 8 8 . 24 48 24 . 32 96 96 32 . 16 64 96 64 16
Programs
-
Maple
p:= proc(i, j, k, l) option remember; if l<0 or j<0 or i<0 or i>l or j>i or k<0 or k>j then 0 elif {i, j, k, l}={0} then 1 else p(i, j, k, l-1) +p(i-1, j, k, l-1) +2*p(i-1, j-1, k, l-1)+2*p(i-1, j-1, k-1, l-1) fi end: seq(seq(seq(seq(p(i, j, k, l), k=0..j), j=0..i), i=0..l), l=0..5); # Adapted from Alois P. Heinz's Maple program for A261356
-
PARI
lista(nn) = {for (n=0, nn, for (i=0, n, for (j=0, i, for (k=0, j, print1(2^j*binomial(n,i)*binomial(i,j)*binomial(j,k), ", ")););););} \\ Michel Marcus, Oct 07 2015
Formula
T(i+1,j,k,l) = 2*T(i,j-1,k-1,l-1) + 2*T(i,j-1,k-1,l) + T(i,j-1,k,l) + T(i,j,k,l); T(i,j,k,-1)=0,...; T(0,0,0,0)=1.
T(n,i,j,k) = 2^j*binomial(n,i)*binomial(i,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015
Comments