A261417 Numbers n such that both ceiling(sqrt(n)) and ceiling(n^(1/3)) divide n.
1, 2, 4, 6, 9, 12, 36, 56, 64, 90, 100, 110, 132, 144, 156, 210, 400, 576, 702, 729, 870, 900, 930, 1056, 1089, 1122, 1332, 1560, 2352, 2450, 2970, 3600, 4032, 4096, 4556, 4624, 4692, 5112, 5184, 5256, 5852, 7140, 8190, 9702, 9900, 12432, 14400, 15500, 15625, 16770, 16900, 17030, 18090, 18225, 18360, 19740
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..229
Programs
-
Magma
[n: n in [1..2000] | n mod Ceiling((n^(1/2))) eq 0 and n mod Ceiling((n^(1/3))) eq 0 ];
-
Mathematica
Select[Range[200000], Mod[#, Ceiling[#^(1/2)]] == Mod[#, Ceiling[#^(1/3)]] == 0 &] (* Vincenzo Librandi, Aug 21 2016 *)
-
PARI
is(n) = Mod(n, ceil(sqrt(n)))==0 && Mod(n, ceil(n^(1/3)))==0 \\ Felix Fröhlich, Aug 21 2016