cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A302649 Numbers that are the sum of some fixed power of the digits of their ten's complement.

Original entry on oeis.org

5, 8, 14, 3953, 33626, 89843301, 71341793655800, 245916794707565, 19429639306542698, 36106092555634673, 1818632037625982420, 4099389352522800257, 51096092690519702666, 1361788669288181208317, 80939622935362328928524, 3061856409269150191916609
Offset: 1

Views

Author

Paolo P. Lava, Apr 11 2018

Keywords

Comments

No other term up to 3*10^12. - Giovanni Resta, Apr 12 2018

Examples

			(10 - 5) = 5 and 5^1 = 5;
(10 - 8) = 2 and 2^3 = 8;
(100 - 14) = 86 and 8^1 + 6^1 = 14;
(10000 - 3953) = 6047 and 6^4 + 0^4 + 4^4 + 7^4 = 3953;
(100000 - 33626) = 66374 and 6^5 + 6^5 + 3^5 + 7^5 + 4^5 = 33626;
(100000000 - 89843301) = 10156699 and 1^8 + 0^8 + 1^8 + 5^8 + 6^8 + 6^8 + 9^8 + 9^8 = 89843301.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,i,j,k,n;
    for n from 1 to q do a:=convert(10^(ilog10(n)+1)-n,base,10);
    b:=convert(a,`+`); j:=1; i:=0; while n>b do
    if i=b then break; else i:=b; j:=j+1; b:=add(a[k]^j,k=1..nops(a)); fi; od;
    if n=b then print(n); fi; od; end: P(10^9);

Extensions

a(7)-a(16) from Chai Wah Wu, Jun 06 2018

A302651 Numbers that are the product of some fixed power of the digits of their ten's complement.

Original entry on oeis.org

5, 8, 81, 2016, 2205
Offset: 1

Views

Author

Paolo P. Lava, Apr 11 2018

Keywords

Comments

No other terms up to 10^40. - Giovanni Resta Apr 12 2018
No other terms up to 10^51 - Chai Wah Wu, Jun 06 2018

Examples

			(10 - 5) = 5 and 5^1 = 5;
(10 - 8) = 2 and 2^3 = 8;
(100 - 81) = 19 and 1^2 * 9^2 = 81;
(10000 - 2016) = 7984 and 7^1 * 9^1 * 8^1 * 4^1 = 2016;
(10000 - 2205) = 7795 and 7^1 * 7^1 * 9^1 * 5^1 = 2205;
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,i,j,k,n;
    for n from 1 to q do a:=convert(10^(ilog10(n)+1)-n,base,10);
    b:=convert(a,`*`); j:=1; i:=0; while n>b do
    if i=b then break; else i:=b; j:=j+1; b:=add(a[k]^j,k=1..nops(a)); fi; od;
    if n=b then print(n); fi; od; end: P(10^9);

A380810 Integers m for which m = Sum (d_i - 1)^k, where m is k decimal digits long and d_i are the digits of m.

Original entry on oeis.org

26, 126, 217, 729, 4193, 134068, 10875747, 24228197, 2491591748, 106557756999043
Offset: 1

Views

Author

Paolo P. Lava, Feb 04 2025

Keywords

Comments

Terms have <= 24 digits since 25*8^25 < 10^24. Full sequence is listed. - Chai Wah Wu, Feb 05 2025

Examples

			134068 is a term since it is k=6 digits long and its digit powers are (1-1)^6 + (3-1)^6 + (4-1)^6 + (0-1)^6 + (6-1)^6 + (8-1)^6 = 134068.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a, b, d, k, n;
    for n from 1 to q do a:=convert(n,base,10); d:=length(n)
    if add((a[k]-1)^d,k=1..d)=n then print(n); fi; od; end: P(3*10^7);
  • Mathematica
    Select[Range[150000], # == Sum[(Part[IntegerDigits[#], l] - 1)^IntegerLength[#],{l, IntegerLength[#]}] &] (* Stefano Spezia, Feb 04 2025 *)
  • PARI
    isok(m) = my(d=digits(m), k=#d); m == sum(i=1, k, (d[i]-1)^k); \\ Michel Marcus, Feb 04 2025
    
  • Python
    from itertools import chain, combinations_with_replacement, islice
    def A380810_gen(): # generator of terms
        yield from chain.from_iterable(sorted(map(lambda s:sum((int(d)-1)**l for d in s),sorted(filter(lambda s:sorted(str(m:=sum((int(d)-1)**l for d in s)))==list(s) and 10**l>m>=10**(l-1),combinations_with_replacement('0123456789',l))))) for l in range(1,25))
    A380810_list = list(islice(A380810_gen(),10)) # Chai Wah Wu, Feb 05 2025

Extensions

a(9)-a(10) from Chai Wah Wu, Feb 05 2025

A380854 Integers m for which m = Sum (d_i + 1)^k, where m is k decimal digits long and d_i are the digits of m.

Original entry on oeis.org

141, 251, 560, 664807556, 424710875510, 863812804425, 137134427278403350052, 366828486147473227474, 186740753582576522645847734
Offset: 1

Views

Author

Chai Wah Wu, Feb 06 2025

Keywords

Examples

			664807556 is a term since it has 9 digits and (6+1)^9+(6+1)^9+(4+1)^9+(8+1)^9+(0+1)^9+(7+1)^9+(5+1)^9+(5+1)^9+(6+1)^9 = 664807556.
		

Crossrefs

Programs

  • Python
    from itertools import chain, combinations_with_replacement, count, islice
    def A380854_gen(): # generator of terms
        yield from chain.from_iterable(sorted(map(lambda s:sum((d+1)**l for d in s),sorted(filter(lambda s:tuple(sorted(map(int,str(m:=sum((d+1)**l for d in s)))))==s and 10**l>m>=10**(l-1),combinations_with_replacement(range(10),l))))) for l in count(1))
    A380854_list = print(list(islice(A380854_gen(),8)))

Extensions

a(1)-a(3) from Paolo P. Lava
a(9) from Chai Wah Wu, Feb 07 2025
Showing 1-4 of 4 results.