A261489 Number of partitions of subsets of {1,...,n}, where consecutive integers and the elements in {1, n} are required to be in different parts.
1, 2, 4, 8, 25, 82, 313, 1318, 6098, 30603, 165282, 954065, 5853242, 37987146, 259751877, 1864926846, 14016442573, 109985575616, 898948324164, 7637000950875, 67310106587314, 614420757079213, 5799709014601124, 56530981389520624, 568255134674637557
Offset: 0
Keywords
Examples
a(3) = 8: {}, 1, 2, 3, 1|2, 1|3, 2|3, 1|2|3. a(4) = 25: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 2|3, 2|4, 24, 3|4, 1|2|3, 13|2, 1|2|4, 1|24, 1|3|4, 13|4, 2|3|4, 24|3, 1|2|3|4, 13|2|4, 1|3|24, 13|24.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Maple
g:= proc(n, l, t, f) option remember; `if`(n=0, 1, add(`if`(l>0 and j=l or f=1 and n=1 and j=1, 0, g(n-1, j, t+`if`(j=t, 1, 0), f)), j=0..t)) end: a:= n-> `if`(n=0, 1, g(n-1, 0, 1, 0)+g(n-1, 1, 2, 1)): seq(a(n), n=0..25);
-
Mathematica
g[n_, l_, t_, f_] := g[n, l, t, f] = If[n==0, 1, Sum[If[l>0 && j==l || f==1 && n==1 && j==1, 0, g[n-1, j, t+If[j==t, 1, 0], f]], {j, 0, t}]]; a[n_] := If[n==0, 1, g[n-1, 0, 1, 0]+g[n-1, 1, 2, 1]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)