cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081855 Decimal expansion of Gamma''(1).

Original entry on oeis.org

1, 9, 7, 8, 1, 1, 1, 9, 9, 0, 6, 5, 5, 9, 4, 5, 1, 1, 0, 7, 9, 0, 7, 9, 1, 3, 0, 3, 0, 0, 1, 2, 6, 9, 4, 1, 5, 8, 7, 8, 3, 6, 7, 0, 4, 1, 4, 5, 6, 4, 2, 8, 1, 8, 0, 8, 8, 6, 3, 9, 1, 5, 6, 7, 3, 7, 2, 2, 7, 3, 2, 6, 4, 0, 9, 8, 9, 5, 7, 5, 4, 3, 4, 9, 4, 8, 9, 2, 1, 6, 9, 2, 5, 1, 4, 7, 4, 6, 8, 2, 6, 0, 7, 0, 4
Offset: 1

Views

Author

Benoit Cloitre, Apr 11 2003

Keywords

Comments

Also the decimal expansion of the Integral_{x>=0} exp(-x)*(log(x))^2 dx. - Robert G. Wilson v, Aug 18 2017

Examples

			1.978111990655945110790791303001269415878367... [corrected by _Georg Fischer_, Jul 29 2021]
		

References

  • Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 179.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.2, p. 31.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^2 + Evaluate(L,2); // G. C. Greubel, Aug 29 2018
  • Mathematica
    EulerGamma^2 + Zeta[2] // RealDigits[#, 10, 105] & // First (* Jean-François Alcover, Apr 29 2013 *)
    RealDigits[ Integrate[ Exp[-x]*Log[x]^2, {x, 0, Infinity}], 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2017 *)
  • PARI
    Euler^2+zeta(2) \\ Charles R Greathouse IV, Aug 18 2017
    
  • PARI
    intnum(x=0,[oo,1],exp(-x)*log(x)^2) \\ Charles R Greathouse IV, Aug 18 2017
    

Formula

The second derivative of Gamma(x) at x=1 is Gamma^2+zeta(2) = 1.97811199... where Gamma is the Euler constant and zeta(2) = Pi^2/6.

A291486 Decimal expansion of Gamma''''(1).

Original entry on oeis.org

2, 3, 5, 6, 1, 4, 7, 4, 0, 8, 4, 0, 2, 5, 6, 0, 4, 4, 9, 6, 0, 7, 3, 1, 2, 7, 0, 5, 6, 5, 2, 4, 4, 2, 0, 4, 0, 8, 6, 5, 3, 7, 6, 8, 3, 1, 3, 3, 6, 3, 1, 6, 9, 9, 6, 9, 7, 1, 8, 9, 7, 8, 9, 3, 4, 2, 5, 2, 5, 6, 4, 1, 4, 1, 9, 6, 8, 6, 4, 2, 8, 2, 2, 5, 8, 5, 4, 3, 4, 4, 9, 2, 4, 5, 0, 1, 6, 9, 5, 8, 2, 9, 4, 1, 2, 4, 1, 6, 0, 9, 0
Offset: 2

Views

Author

Robert G. Wilson v, Aug 24 2017

Keywords

Examples

			23.56147408402560449607312705652442040865376831336316996971897893425256...
		

Crossrefs

Cf. A000796 (Pi), A001620 (EulerGamma), A002117 (zeta(3)), A081855, A261509.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^4 + EulerGamma(R)^2*Pi(R)^2 + 8*EulerGamma(R)*Evaluate(L,3) + 3*Pi(R)^4/20; // G. C. Greubel, Sep 07 2018
  • Maple
    c:= subs(x=1.0, diff(GAMMA(x), x$4)):
    evalf(c, 120);  # Alois P. Heinz, Jul 01 2023
  • Mathematica
    RealDigits[Gamma''''[1], 10, 111][[1]]
  • PARI
    default(realprecision, 100); Euler^4 + Euler^2*Pi^2 + 8*Euler*zeta(3) + 3*Pi^4/20 \\ G. C. Greubel, Sep 07 2018
    

Formula

Equals EulerGamma^4 + EulerGamma^2*Pi^2 + 8*EulerGamma*Zeta(3) + 3*Pi^4/20.
Equals Integral_{x=0..oo} exp(-x)*log(x)^4 dx. - Amiram Eldar, Aug 06 2020
Showing 1-2 of 2 results.