A261530 Numbers k such that k^2 + 1 = p*q*r*s where p,q,r,s are distinct primes and the sum p+q+r+s is a perfect square.
173, 187, 477, 565, 965, 1237, 1277, 1437, 1525, 1636, 2452, 2587, 2608, 2653, 2827, 2885, 2971, 3197, 3388, 3412, 3435, 3477, 3848, 3891, 4188, 4237, 4492, 4724, 5333, 5728, 5899, 6272, 7088, 7108, 7421, 8363, 8541, 9379, 9652, 10227, 10872, 11581, 12237
Offset: 1
Keywords
Examples
173 is in the sequence because 173^2 + 1 = 2*5*41*73 and 2 + 5 + 41 + 73 = 11^2.
Programs
-
Maple
with(numtheory): for n from 1 to 20000 do: y:=factorset(n^2+1):n0:=nops(y): if n0=4 and bigomega(n^2+1)=4 and sqrt(y[1]+y[2]+y[3]+y[4])=floor(sqrt(y[1]+y[2]+y[3]+y[4])) then printf(`%d, `, n): else fi: od:
-
PARI
isok(n) = my(f = factor(n^2+1)); (#f~== 4) && (vecmax(f[,2]) == 1) && issquare(vecsum(f[,1])) ; \\ Michel Marcus, Aug 24 2015
Comments