A261544 a(n) = Sum_{k=0..n} 1000^k.
1, 1001, 1001001, 1001001001, 1001001001001, 1001001001001001, 1001001001001001001, 1001001001001001001001, 1001001001001001001001001, 1001001001001001001001001001, 1001001001001001001001001001001, 1001001001001001001001001001001001
Offset: 0
Examples
From _Bruno Berselli_, Aug 25 2015: (Start) a(n) is the binary representation of A023001 ------------------------------------------------- 1 ........................................... 1 1001 ........................................ 9 1001001 ..................................... 73 1001001001 ................................ 585 1001001001001 ............................ 4681 1001001001001001 ........................ 37449 1001001001001001001 .................... 299593 1001001001001001001001 ................ 2396745 1001001001001001001001001 ............ 19173961, etc. (End)
Links
- Colin Barker, Table of n, a(n) for n = 0..333 (corrected by Michel Marcus, Jan 19 2019)
- John Rafael M. Antalan, A Recreational Application of Two Integer Sequences and the Generalized Repetitious Number Puzzle, arXiv:1908.06014 [math.HO], 2019.
- Eric Weisstein's World of Mathematics, Palindromic Number.
- Index entries for linear recurrences with constant coefficients, signature (1001,-1000).
Crossrefs
Programs
-
Magma
[(1000^(n+1)-1)/999: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
-
Mathematica
Table[(1000^(n + 1) - 1)/999, {n, 0, 15}] LinearRecurrence[{1001, -1000}, {1, 1001}, 20] (* Vincenzo Librandi, Aug 24 2015 *)
-
PARI
Vec(1 / ((x-1)*(1000*x-1)) + O(x^20)) \\ Colin Barker, Aug 24 2015
Formula
a(n) = (1000^(n + 1) - 1)/999.
a(n) = 1001*a(n-1) - 1000*a(n-2). - Colin Barker, Aug 24 2015
G.f.: 1 / ((x-1)*(1000*x-1)). - Colin Barker, Aug 24 2015
E.g.f.: (1/999)*(1000000*exp(1000*x) - exp(x)). - G. C. Greubel, Aug 29 2015
Comments