A261569 Expansion of Product_{k>=1} (1 + 5*x^k).
1, 5, 5, 30, 30, 55, 180, 205, 330, 480, 1230, 1380, 2255, 3030, 4530, 8555, 10680, 15330, 21330, 29730, 39480, 67380, 81505, 116280, 153030, 210930, 270805, 370080, 534330, 675480, 900480, 1180380, 1544130, 1997280, 2597280, 3304805, 4581180, 5653080
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, 5*b(n-i, i-1)))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Aug 24 2015 -
Mathematica
nmax = 40; CoefficientList[Series[Product[1 + 5*x^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*5^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *) (QPochhammer[-5, x]/6 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
Formula
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(6*Pi)*n^(3/4)), where c = Pi^2/6 + log(5)^2/2 + polylog(2, -1/5) = 2.74927912606080829002558751537626864449... . - Vaclav Kotesovec, Jan 04 2016
G.f.: Sum_{i>=0} 5^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
Comments