cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A032302 G.f.: Product_{k>=1} (1 + 2*x^k).

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 18, 22, 30, 42, 66, 78, 110, 138, 186, 254, 318, 402, 522, 654, 822, 1074, 1306, 1638, 2022, 2514, 3058, 3798, 4662, 5658, 6882, 8358, 10062, 12186, 14610, 17534, 21150, 25146, 29994, 35694, 42446, 50178, 59514, 70110, 82758, 97602, 114570, 134262
Offset: 0

Views

Author

Christian G. Bower, Apr 01 1998

Keywords

Comments

"EFK" (unordered, size, unlabeled) transform of 2,2,2,2,...
Number of partitions into distinct parts of 2 sorts, see example. - Joerg Arndt, May 22 2013
In general, for a fixed integer m > 0, if g.f. = Product_{k>=1} (1 + m*x^k) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m+1)*Pi)*n^(3/4)), where c = Pi^2/6 + log(m)^2/2 + polylog(2, -1/m) = -polylog(2, -m). - Vaclav Kotesovec, Jan 04 2016
Antidiagonal sums of A284593. - Peter Bala, Mar 30 2017

Examples

			From _Joerg Arndt_, May 22 2013: (Start)
There are a(7) = 22 partitions of 7 into distinct parts of 2 sorts (format P:S for part:sort):
01:  [ 1:0  2:0  4:0  ]
02:  [ 1:0  2:0  4:1  ]
03:  [ 1:0  2:1  4:0  ]
04:  [ 1:0  2:1  4:1  ]
05:  [ 1:0  6:0  ]
06:  [ 1:0  6:1  ]
07:  [ 1:1  2:0  4:0  ]
08:  [ 1:1  2:0  4:1  ]
09:  [ 1:1  2:1  4:0  ]
10:  [ 1:1  2:1  4:1  ]
11:  [ 1:1  6:0  ]
12:  [ 1:1  6:1  ]
13:  [ 2:0  5:0  ]
14:  [ 2:0  5:1  ]
15:  [ 2:1  5:0  ]
16:  [ 2:1  5:1  ]
17:  [ 3:0  4:0  ]
18:  [ 3:0  4:1  ]
19:  [ 3:1  4:0  ]
20:  [ 3:1  4:1  ]
21:  [ 7:0  ]
22:  [ 7:1  ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 2*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
    # Alternatively:
    simplify(expand(QDifferenceEquations:-QPochhammer(-2,x,99)/3,x)):
    seq(coeff(%,x,n), n=0..47); # Peter Luschny, Nov 17 2016
  • Mathematica
    nn=47; CoefficientList[Series[Product[1+2x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 07 2013 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (QPochhammer[-2, x]/3 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+2*x^n)) \\ Joerg Arndt, May 22 2013

Formula

a(n) = A072706(n)*2 for n>=1.
G.f.: Sum_{n>=0} (2^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k ) ). - Joerg Arndt, Jan 20 2014
a(n) = (1/3) [x^n] QPochhammer(-2,x). - Vladimir Reshetnikov, Nov 20 2015
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) = 1.43674636688368094636290202389358335424... . Equivalently, c = A266576 = Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2. - Vaclav Kotesovec, Jan 04 2016

A032308 Expansion of Product_{k>=1} (1 + 3*x^k).

Original entry on oeis.org

1, 3, 3, 12, 12, 21, 48, 57, 84, 120, 228, 264, 399, 516, 732, 1119, 1416, 1884, 2532, 3324, 4296, 6168, 7545, 9984, 12684, 16500, 20577, 26688, 34572, 43032, 54264, 68232, 84972, 106176, 131664, 162507, 205680, 249888, 308856, 377796, 465195, 564024, 691788, 835572, 1017768, 1241040
Offset: 0

Views

Author

Keywords

Comments

"EFK" (unordered, size, unlabeled) transform of 3,3,3,3,...
Number of partitions into distinct parts of 3 sorts, see example. [Joerg Arndt, May 22 2013]

Examples

			From _Joerg Arndt_, May 22 2013: (Start)
There are a(5) = 21 partitions of 5 into distinct parts of 3 sorts (format P:S for part:sort):
01:  [ 1:0  4:0  ]
02:  [ 1:0  4:1  ]
03:  [ 1:0  4:2  ]
04:  [ 1:1  4:0  ]
05:  [ 1:1  4:1  ]
06:  [ 1:1  4:2  ]
07:  [ 1:2  4:0  ]
08:  [ 1:2  4:1  ]
09:  [ 1:2  4:2  ]
10:  [ 2:0  3:0  ]
11:  [ 2:0  3:1  ]
12:  [ 2:0  3:2  ]
13:  [ 2:1  3:0  ]
14:  [ 2:1  3:1  ]
15:  [ 2:1  3:2  ]
16:  [ 2:2  3:0  ]
17:  [ 2:2  3:1  ]
18:  [ 2:2  3:2  ]
19:  [ 5:0  ]
20:  [ 5:1  ]
21:  [ 5:2  ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 3*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
    # Alternatively:
    simplify(expand(QDifferenceEquations:-QPochhammer(-3,x,99),x)/4):
    seq(coeff(%,x,n), n=0..45); # Peter Luschny, Nov 17 2016
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + 3*x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 24 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*3^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (QPochhammer[-3, x]/4 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+3*x^n)) \\ Joerg Arndt, May 22 2013

Formula

G.f.: Product_{k>=1} (1 + 3*x^k).
a(n) = (1/4) * [x^n] QPochammer(-3, x). - Vladimir Reshetnikov, Nov 20 2015
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(Pi)*n^(3/4)), where c = Pi^2/6 + log(3)^2/2 + polylog(2, -1/3) = 1.93937542076670895307727171917789144122... . - Vaclav Kotesovec, Jan 04 2016
G.f.: Sum_{i>=0} 3^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018

Extensions

a(0) prepended and more terms added by Joerg Arndt, May 22 2013

A261568 Expansion of Product_{k>=1} (1 + 4*x^k).

Original entry on oeis.org

1, 4, 4, 20, 20, 36, 100, 116, 180, 260, 580, 660, 1044, 1380, 2020, 3444, 4340, 6020, 8260, 11220, 14740, 23140, 28196, 38900, 50420, 67780, 85956, 114900, 157140, 197860, 257060, 331060, 423540, 540100, 687620, 864084, 1145300, 1406500, 1789860, 2231860
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 4*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 + 4*x^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*4^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (QPochhammer[-4, x]/5 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(5*Pi)*n^(3/4)), where c = Pi^2/6 + 2*log(2)^2 + polylog(2, -1/4) = 2.36993979699836583198553742535032304875... . - Vaclav Kotesovec, Jan 04 2016
G.f.: Sum_{i>=0} 4^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018

A344064 Expansion of Product_{k>=1} (1 + 5^(k-1)*x^k).

Original entry on oeis.org

1, 1, 5, 30, 150, 875, 4500, 25625, 131250, 750000, 3843750, 21562500, 112109375, 621093750, 3222656250, 17880859375, 92578125000, 508300781250, 2658691406250, 14465332031250, 75439453125000, 411254882812500, 2142486572265625, 11590576171875000, 60722351074218750, 326728820800781250
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1 + 5^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 5^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 25}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 5^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 5^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/5))^(1/4) * 5^n * exp(2*sqrt(-polylog(2, -1/5)*n)) / (2*sqrt(6*Pi/5)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A286957 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + k*x^j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 2, 0, 1, 4, 3, 6, 2, 0, 1, 5, 4, 12, 6, 3, 0, 1, 6, 5, 20, 12, 10, 4, 0, 1, 7, 6, 30, 20, 21, 18, 5, 0, 1, 8, 7, 42, 30, 36, 48, 22, 6, 0, 1, 9, 8, 56, 42, 55, 100, 57, 30, 8, 0, 1, 10, 9, 72, 56, 78, 180, 116, 84, 42, 10, 0, 1, 11, 10, 90, 72, 105, 294, 205, 180, 120, 66, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 17 2017

Keywords

Comments

A(n,k) is the number of partitions of n into distinct parts of k sorts: the parts are unordered, but not the sorts.

Examples

			Square array begins:
1,  1,   1,   1,   1,   1,  ...
0,  1,   2,   3,   4,   5,  ...
0,  1,   2,   3,   4,   5,  ...
0,  2,   6,  12,  20,  30,  ...
0,  2,   6,  12,  20,  30,  ...
0,  3,  10,  21,  36,  55,  ...
		

Crossrefs

Columns k=0-5 give: A000007, A000009, A032302, A032308, A261568, A261569.
Main diagonal gives A291698.
Cf. A246935.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + k x^i), {i, 1, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[-k, x]/(1 + k), {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + k*x^j).

A343467 a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-5)^d.

Original entry on oeis.org

5, -10, 45, -160, 629, -2590, 11165, -48910, 217045, -976258, 4438925, -20346440, 93900245, -435959830, 2034505661, -9536767660, 44878791365, -211927519090, 1003867701485, -4768372070128, 22706531350485, -108372079190350, 518301258916445, -2483526875847690, 11920928955078629
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-(1/n) Sum[EulerPhi[n/d] (-5)^d, {d, Divisors[n]}], {n, 1, 25}]
    nmax = 25; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 5 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} phi(k) * log(1 + 5*x^k) / k.
a(n) = -(1/n) * Sum_{k=1..n} (-5)^gcd(n,k).
Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A261569.
Showing 1-6 of 6 results.