cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A344062 Expansion of Product_{k>=1} (1 + 3^(k-1)*x^k).

Original entry on oeis.org

1, 1, 3, 12, 36, 135, 432, 1539, 4860, 17496, 55404, 192456, 623295, 2125764, 6849684, 23442453, 75110328, 252965916, 822670668, 2735858268, 8838926712, 29501352792, 95090206689, 314068876416, 1018141045092, 3342663979092, 10798571289897, 35481518064576
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Product[(1 + 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 3^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 27}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 3^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 3^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/3))^(1/4) * 3^n * exp(2*sqrt(-polylog(2, -1/3)*n)) / (4*sqrt(Pi/3)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A344063 Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).

Original entry on oeis.org

1, 1, 4, 20, 80, 384, 1600, 7424, 30720, 143360, 593920, 2703360, 11403264, 51118080, 214958080, 965738496, 4047503360, 17951621120, 76168560640, 334202142720, 1411970498560, 6211596451840, 26203595472896, 114246130073600, 484815908372480, 2101441598586880, 8896148580335616
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Product[(1 + 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 4^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 26}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 4^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 4^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/4))^(1/4) * 4^n * exp(2*sqrt(-polylog(2, -1/4)*n)) / (2*sqrt(5*Pi/4)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A344065 Expansion of Product_{k>=1} (1 + 6^(k-1)*x^k).

Original entry on oeis.org

1, 1, 6, 42, 252, 1728, 10584, 71280, 435456, 2939328, 17962560, 119532672, 739031040, 4867527168, 30051689472, 198147658752, 1221537687552, 7984437608448, 49643697954816, 321998350270464, 1997815999463424, 12977575759282176, 80455233450737664, 519208351807832064
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + 6^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 6^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 6^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 6^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/6))^(1/4) * 6^n * exp(2*sqrt(-polylog(2, -1/6)*n)) / (2*sqrt(7*Pi/6)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A344066 Expansion of Product_{k>=1} (1 + 7^(k-1)*x^k).

Original entry on oeis.org

1, 1, 7, 56, 392, 3087, 21952, 170471, 1210104, 9411920, 66824632, 513890832, 3683707839, 28086110472, 201122377288, 1534688027817, 10978118077136, 83158453503608, 599161640356888, 4508826988300152, 32435340235930576, 244366486039786096, 1756858874561956865, 13161303959340223232
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[(1 + 7^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 7^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 7^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 7^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/7))^(1/4) * 7^n * exp(2*sqrt(-polylog(2, -1/7)*n)) / (4*sqrt(2*Pi/7)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A344067 Expansion of Product_{k>=1} (1 + 8^(k-1)*x^k).

Original entry on oeis.org

1, 1, 8, 72, 576, 5120, 41472, 364544, 2949120, 25952256, 209977344, 1830813696, 14931722240, 129251672064, 1053340729344, 9123584278528, 74294344286208, 639503450505216, 5239722662166528, 44846880273727488, 367008185258606592, 3144110674230116352, 25718087147075928064
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 + 8^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 8^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 22}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 8^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 8^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/8))^(1/4) * 8^n * exp(2*sqrt(-polylog(2, -1/8)*n)) / (6*sqrt(Pi/8)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A344068 Expansion of Product_{k>=1} (1 + 9^(k-1)*x^k).

Original entry on oeis.org

1, 1, 9, 90, 810, 8019, 72900, 715149, 6495390, 63772920, 579270690, 5643903420, 51613018479, 499772430810, 4567687565310, 44250780833091, 404188047763920, 3894703308072990, 35764052204589030, 342923118899865390, 3146016498406236720, 30187757787717436380, 276843069234653897241
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2021

Keywords

Comments

In general, if g.f. = Product_{k>=1} (1 + d^(k-1)*x^k), where d > 1, then a(n) ~ (-polylog(2, -1/d))^(1/4) * d^n * exp(2*sqrt(-polylog(2, -1/d)*n)) / (2*sqrt((1 + 1/d)*Pi)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 + 9^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 9^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 22}]
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 9^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021

Formula

a(n) = Sum_{k=0..A003056(n)} q(n,k) * 9^(n-k), where q(n,k) is the number of partitions of n into k distinct parts.
a(n) ~ (-polylog(2, -1/9))^(1/4) * 9^n * exp(2*sqrt(-polylog(2, -1/9)*n)) / (2*sqrt(10*Pi/9)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A370435 Expansion of Product_{n>=1} (1 - 5^(n-1)*x^n) * (1 + 5^(n-1)*x^n)^2.

Original entry on oeis.org

1, 1, 4, 29, 120, 820, 3625, 23400, 105000, 669500, 3075625, 18837500, 89237500, 532500000, 2554062500, 15086640625, 72843750000, 421773437500, 2084812500000, 11834804687500, 58638281250000, 332210205078125, 1656773437500000, 9240966796875000, 46624682617187500, 257479980468750000
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2024

Keywords

Comments

Compare to Product_{n>=1} (1 - 5^n*x^n) * (1 + 5^n*x^n)^2 = Sum_{n>=0} 5^(n*(n+1)/2) * x^(n*(n+1)/2).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 29*x^3 + 120*x^4 + 820*x^5 + 3625*x^6 + 23400*x^7 + 105000*x^8 + 669500*x^9 + 3075625*x^10 + 18837500*x^11 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 5*x^2)*(1 + 5*x^2)^2 * (1 - 25*x^3)*(1 + 25*x^3)^2 * (1 - 125*x^4)*(1 + 125*x^4)^2 * ... * (1 - 5^(n-1)*x^n)*(1 + 5^(n-1)*x^n)^2 * ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( prod(k=1,n, (1 - 5^(k-1)*x^k) * (1 + 5^(k-1)*x^k)^2 +x*O(x^n)), n)}
    for(n=0,40, print1(a(n),", "))

Formula

a(n) ~ c^(1/4) * 5^(n + 3/2) * exp(2*sqrt(c*n)) / (24 * sqrt(Pi) * n^(3/4)), where c = -2*polylog(2, -1/5) - polylog(2, 1/5). - Vaclav Kotesovec, Feb 27 2024
Showing 1-7 of 7 results.