A344063
Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).
Original entry on oeis.org
1, 1, 4, 20, 80, 384, 1600, 7424, 30720, 143360, 593920, 2703360, 11403264, 51118080, 214958080, 965738496, 4047503360, 17951621120, 76168560640, 334202142720, 1411970498560, 6211596451840, 26203595472896, 114246130073600, 484815908372480, 2101441598586880, 8896148580335616
Offset: 0
Cf.
A003056,
A008289,
A261568,
A304961,
A338673,
A340103,
A344062,
A344064,
A344065,
A344066,
A344067,
A344068.
-
nmax = 26; CoefficientList[Series[Product[(1 + 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 4^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 26}]
-
seq(n)={Vec(prod(k=1, n, 1 + 4^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344064
Expansion of Product_{k>=1} (1 + 5^(k-1)*x^k).
Original entry on oeis.org
1, 1, 5, 30, 150, 875, 4500, 25625, 131250, 750000, 3843750, 21562500, 112109375, 621093750, 3222656250, 17880859375, 92578125000, 508300781250, 2658691406250, 14465332031250, 75439453125000, 411254882812500, 2142486572265625, 11590576171875000, 60722351074218750, 326728820800781250
Offset: 0
Cf.
A003056,
A008289,
A261569,
A304961,
A338674,
A340103,
A344062,
A344063,
A344065,
A344066,
A344067,
A344068.
-
nmax = 25; CoefficientList[Series[Product[(1 + 5^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 5^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 25}]
-
seq(n)={Vec(prod(k=1, n, 1 + 5^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344065
Expansion of Product_{k>=1} (1 + 6^(k-1)*x^k).
Original entry on oeis.org
1, 1, 6, 42, 252, 1728, 10584, 71280, 435456, 2939328, 17962560, 119532672, 739031040, 4867527168, 30051689472, 198147658752, 1221537687552, 7984437608448, 49643697954816, 321998350270464, 1997815999463424, 12977575759282176, 80455233450737664, 519208351807832064
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338675,
A340103,
A344062,
A344063,
A344064,
A344066,
A344067,
A344068.
-
nmax = 23; CoefficientList[Series[Product[(1 + 6^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 6^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, 1 + 6^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344066
Expansion of Product_{k>=1} (1 + 7^(k-1)*x^k).
Original entry on oeis.org
1, 1, 7, 56, 392, 3087, 21952, 170471, 1210104, 9411920, 66824632, 513890832, 3683707839, 28086110472, 201122377288, 1534688027817, 10978118077136, 83158453503608, 599161640356888, 4508826988300152, 32435340235930576, 244366486039786096, 1756858874561956865, 13161303959340223232
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338676,
A340103,
A344062,
A344063,
A344064,
A344065,
A344067,
A344068.
-
nmax = 23; CoefficientList[Series[Product[(1 + 7^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 7^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 23}]
-
seq(n)={Vec(prod(k=1, n, 1 + 7^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344067
Expansion of Product_{k>=1} (1 + 8^(k-1)*x^k).
Original entry on oeis.org
1, 1, 8, 72, 576, 5120, 41472, 364544, 2949120, 25952256, 209977344, 1830813696, 14931722240, 129251672064, 1053340729344, 9123584278528, 74294344286208, 639503450505216, 5239722662166528, 44846880273727488, 367008185258606592, 3144110674230116352, 25718087147075928064
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338677,
A340103,
A344062,
A344063,
A344064,
A344065,
A344066,
A344068.
-
nmax = 22; CoefficientList[Series[Product[(1 + 8^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 8^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, 1 + 8^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A344068
Expansion of Product_{k>=1} (1 + 9^(k-1)*x^k).
Original entry on oeis.org
1, 1, 9, 90, 810, 8019, 72900, 715149, 6495390, 63772920, 579270690, 5643903420, 51613018479, 499772430810, 4567687565310, 44250780833091, 404188047763920, 3894703308072990, 35764052204589030, 342923118899865390, 3146016498406236720, 30187757787717436380, 276843069234653897241
Offset: 0
Cf.
A003056,
A008289,
A304961,
A338678,
A340103,
A344062,
A344063,
A344064,
A344065,
A344066,
A344067.
-
nmax = 22; CoefficientList[Series[Product[(1 + 9^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 9^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 22}]
-
seq(n)={Vec(prod(k=1, n, 1 + 9^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A352762
Expansion of Product_{k>=1} 1 / (1 + 3^(k-1)*x^k).
Original entry on oeis.org
1, -1, -2, -7, -11, -43, -65, -259, -146, -1798, 826, -8116, 17593, -35089, 301903, -308464, 3582403, 157367, 28816009, 9388694, 329375419, -61352008, 2991009094, 509592773, 23675224255, 1207374806, 229200996508, -129896994130, 2090952547882, -816324790165, 14079091274800
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[1/(1 + 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 3^(n - k), {k, 0, n}], {n, 0, 30}]
A370338
Expansion of Product_{n>=1} (1 - 3^(n-1)*x^n) * (1 + 3^(n-1)*x^n)^2.
Original entry on oeis.org
1, 1, 2, 11, 24, 114, 297, 1224, 3240, 13230, 37017, 138510, 407754, 1469664, 4413366, 15717969, 47239200, 163408266, 511758000, 1719152586, 5348422224, 18083342907, 56672868240, 187301066040, 594207370746, 1947548449296, 6185182455792, 20263641256656, 64084643627283
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 24*x^4 + 114*x^5 + 297*x^6 + 1224*x^7 + 3240*x^8 + 13230*x^9 + 37017*x^10 + 138510*x^11 + 407754*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 3*x^2)*(1 + 3*x^2)^2 * (1 - 9*x^3)*(1 + 9*x^3)^2 * (1 - 27*x^4)*(1 + 27*x^4)^2 * ... * (1 - 3^(n-1)*x^n)*(1 + 3^(n-1)*x^n)^2 * ...
Compare A(x) to the series that results from a similar infinite product:
(1 - 3*x)*(1 + 3*x)^2 * (1 - 9*x^2)*(1 + 9*x^2)^2 * (1 - 27*x^3)*(1 + 27*x^3)^2 * (1 - 81*x^4)*(1 + 81*x^4)^2 * ... = 1 + 3*x + 27*x^3 + 729*x^6 + 59049*x^10 + 14348907*x^15 + 10460353203*x^21 + 22876792454961*x^28 + ...
-
{a(n) = polcoeff( prod(k=1,n, (1 - 3^(k-1)*x^k) * (1 + 3^(k-1)*x^k)^2 +x*O(x^n)), n)}
for(n=0,30, print1(a(n),", "))
A370711
a(n) = 4^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/2).
Original entry on oeis.org
1, 6, 6, 348, -570, 12084, -31332, 780792, -6111930, 65506884, -599418444, 6707736456, -69508986852, 738378468744, -7878832564872, 85524000547056, -929068361832378, 10158667075255524, -111690827626777788, 1234592278534799592, -13700571880245603276, 152613494540593338264
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 4^Range[0, nmax]
nmax = 30; CoefficientList[Series[Product[(1 + 3*(4*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Sqrt[QPochhammer[-3, x]/4], {x, 0, nmax}], x] * 4^Range[0, nmax]
A370712
a(n) = 3^n * [x^n] Product_{k>=1} (1 + 3*x^k)^(1/3).
Original entry on oeis.org
1, 3, 0, 99, -270, 2430, -10287, 105462, -750141, 5702481, -42623901, 347424633, -2779077762, 22353287634, -181730796723, 1493711042589, -12321529794261, 102125312638713, -850797139405887, 7120067746384863, -59800770201017934, 503922807927384129, -4259721779079782751
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1 + 3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
nmax = 30; CoefficientList[Series[Product[(1 + 3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[(QPochhammer[-3, x]/4)^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
Showing 1-10 of 12 results.
Comments