A343465
a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-3)^d.
Original entry on oeis.org
3, -3, 11, -21, 51, -119, 315, -831, 2195, -5883, 16107, -44357, 122643, -341487, 956635, -2690841, 7596483, -21522347, 61171659, -174342165, 498112275, -1426403751, 4093181691, -11767920107, 33891544419, -97764009003, 282429537947, -817028472645, 2366564736723, -6863037262207
Offset: 1
-
Table[-(1/n) Sum[EulerPhi[n/d] (-3)^d, {d, Divisors[n]}], {n, 1, 30}]
nmax = 30; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 3 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
A343466
a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-4)^d.
Original entry on oeis.org
4, -6, 24, -66, 208, -676, 2344, -8226, 29144, -104760, 381304, -1398476, 5162224, -19172796, 71582944, -268439586, 1010580544, -3817734596, 14467258264, -54975633768, 209430787824, -799644629556, 3059510616424, -11728124734476, 45035996273872, -173215367702376, 667199944815064
Offset: 1
-
Table[-(1/n) Sum[EulerPhi[n/d] (-4)^d, {d, Divisors[n]}], {n, 1, 27}]
nmax = 27; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 4 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
A382993
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} phi(n/d) * (-k)^d.
Original entry on oeis.org
1, 2, 0, 3, -1, 1, 4, -3, 4, 0, 5, -6, 11, -4, 1, 6, -10, 24, -21, 8, 0, 7, -15, 45, -66, 51, -10, 1, 8, -21, 76, -160, 208, -119, 20, 0, 9, -28, 119, -330, 629, -676, 315, -34, 1, 10, -36, 176, -609, 1560, -2590, 2344, -831, 60, 0, 11, -45, 249, -1036, 3367, -7750, 11165, -8226, 2195, -100, 1
Offset: 1
Square array begins:
1, 2, 3, 4, 5, 6, 7, ...
0, -1, -3, -6, -10, -15, -21, ...
1, 4, 11, 24, 45, 76, 119, ...
0, -4, -21, -66, -160, -330, -609, ...
1, 8, 51, 208, 629, 1560, 3367, ...
0, -10, -119, -676, -2590, -7750, -19565, ...
1, 20, 315, 2344, 11165, 39996, 117655, ...
Showing 1-3 of 3 results.