A343465
a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-3)^d.
Original entry on oeis.org
3, -3, 11, -21, 51, -119, 315, -831, 2195, -5883, 16107, -44357, 122643, -341487, 956635, -2690841, 7596483, -21522347, 61171659, -174342165, 498112275, -1426403751, 4093181691, -11767920107, 33891544419, -97764009003, 282429537947, -817028472645, 2366564736723, -6863037262207
Offset: 1
-
Table[-(1/n) Sum[EulerPhi[n/d] (-3)^d, {d, Divisors[n]}], {n, 1, 30}]
nmax = 30; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 3 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
A343467
a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-5)^d.
Original entry on oeis.org
5, -10, 45, -160, 629, -2590, 11165, -48910, 217045, -976258, 4438925, -20346440, 93900245, -435959830, 2034505661, -9536767660, 44878791365, -211927519090, 1003867701485, -4768372070128, 22706531350485, -108372079190350, 518301258916445, -2483526875847690, 11920928955078629
Offset: 1
-
Table[-(1/n) Sum[EulerPhi[n/d] (-5)^d, {d, Divisors[n]}], {n, 1, 25}]
nmax = 25; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 5 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
A382993
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = -(1/n) * Sum_{d|n} phi(n/d) * (-k)^d.
Original entry on oeis.org
1, 2, 0, 3, -1, 1, 4, -3, 4, 0, 5, -6, 11, -4, 1, 6, -10, 24, -21, 8, 0, 7, -15, 45, -66, 51, -10, 1, 8, -21, 76, -160, 208, -119, 20, 0, 9, -28, 119, -330, 629, -676, 315, -34, 1, 10, -36, 176, -609, 1560, -2590, 2344, -831, 60, 0, 11, -45, 249, -1036, 3367, -7750, 11165, -8226, 2195, -100, 1
Offset: 1
Square array begins:
1, 2, 3, 4, 5, 6, 7, ...
0, -1, -3, -6, -10, -15, -21, ...
1, 4, 11, 24, 45, 76, 119, ...
0, -4, -21, -66, -160, -330, -609, ...
1, 8, 51, 208, 629, 1560, 3367, ...
0, -10, -119, -676, -2590, -7750, -19565, ...
1, 20, 315, 2344, 11165, 39996, 117655, ...
Showing 1-3 of 3 results.