cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261607 Initial digit of Fibonacci number F(n) in base 60.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 1, 2, 3, 6, 10, 16, 26, 43, 1, 1, 3, 4, 7, 12, 20, 33, 54, 1, 2, 3, 6, 10, 16, 26, 42, 1, 1, 3, 4, 7, 12, 20, 33, 54, 1, 2, 3, 6, 10, 16, 26, 42, 1, 1, 2, 4, 7, 12, 20, 33, 53, 1, 2, 3, 6, 9, 16, 25, 42, 1, 1, 2, 4, 7, 12
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 09 2015

Keywords

Crossrefs

Programs

  • Haskell
    a261607 = last . a261575_row
    
  • Mathematica
    IntegerDigits[Fibonacci[Range[0, 75]], 60][[All, 1]] (* Michael De Vlieger, Jan 22 2022 *)
  • PARI
    a(n) = if (n, digits(fibonacci(n), 60)[1], 0); \\ Michel Marcus, Jan 22 2022

Formula

a(n) = A261575(n, A261585(n)-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{d=1..59} d*log(1+1/d)/log(60) = 13.92958... . - Amiram Eldar, Jan 12 2023
For n>9, a(n) = floor(60^{alpha*n-beta}), where alpha=log_60(phi), beta=log_60(5)/2, {x}=x-floor(x) denotes the fractional part of x, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 26 2025