cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261668 Number of admissible words of Type G arising in study of q-analogs of multiple zeta values.

Original entry on oeis.org

1, 8, 49, 294, 1791, 11087, 69497, 439790, 2803657, 17978388, 115837591, 749321715, 4863369655, 31655226107, 206549749929, 1350638103790, 8848643946549, 58069093513634, 381650672631329, 2511733593767294, 16550500379912639, 109176697072162079, 720921085149563159
Offset: 1

Views

Author

N. J. A. Sloane, Sep 02 2015

Keywords

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t>n or t<0, 0,
          `if`(n=0, 1, add(j*b(n-j, t-1), j=1..n)))
        end:
    a:= n-> add(add(b(d+k-1, d), d=1..n), k=1..n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Sep 06 2015
  • Mathematica
    a[n_] := Sum[Binomial[2d+n-1, n-1], {d, 1, n}]; Array[a, 25] (* Jean-François Alcover, Feb 17 2016, after Max Alekseyev *)
  • PARI
    a(n) = polcoeff(( (1+x+O(x^(2*n+1)))^(-n-1)-1)/(1-x), 2*n)

Formula

a(n) = A225006(n)-1.
a(n) = Sum_{1<=d,k<=n} Sum_{x1+···+xd=d+k-1 and x1,...,xd>=1} x1*x2*...*xd. See Proposition 10.8 p. 28 of Zhao link. - Michel Marcus, Sep 06 2015
a(n) = Sum_{d=1..n} binomial(2d+n-1,n-1). Also, a(n) is the coefficient of x^(2n) in ((1+x)^(-n-1)-1)/(1-x), or the coefficient of x^n in ((1+x)^(3n+1)-(1+x)^(n+1))/(2+x). - Max Alekseyev, Sep 14 2015

Extensions

More terms from Alois P. Heinz, Sep 06 2015