cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261681 a(n) = 2^n + binomial(n, floor(n/2)) - 1.

Original entry on oeis.org

1, 2, 5, 10, 21, 41, 83, 162, 325, 637, 1275, 2509, 5019, 9907, 19815, 39202, 78405, 155381, 310763, 616665, 1233331, 2449867, 4899735, 9740685, 19481371, 38754731, 77509463, 154276027, 308552055, 614429671, 1228859343, 2448023842, 4896047685, 9756737701
Offset: 0

Views

Author

N. J. A. Sloane, Sep 04 2015

Keywords

Crossrefs

Programs

  • Magma
    [2^n+Binomial(n, Floor(n/2))-1: n in [0..40]]; // Vincenzo Librandi, Sep 05 2015
  • Mathematica
    Table[2^n + Binomial[n, Floor[n/2]] - 1, {n, 0, 40}] (* Vincenzo Librandi, Sep 05 2015 *)
  • PARI
    a(n) = 2^n + binomial(n, n\2) - 1 \\ Michel Marcus, Sep 05 2015
    

Formula

a(n) = A000079(n) + A014495(n).
Conjecture: -(n+1)*(n-4)*a(n) +(3*n^2-9*n-8)*a(n-1) +2*(n^2-9*n+16)*a(n-2) +4*(-3*n^2+18*n-25)*a(n-3) +8*(n-3)^2*a(n-4)=0. - R. J. Mathar, Jan 04 2017
a(n) = Sum_{i=1..n+1} C(n,floor(i/2)). - Wesley Ivan Hurt, Nov 22 2017