A263447
Arrange the 26 sporadic simple groups in increasing order; a(n) = number of sporadic simple groups which are subquotients of the n-th largest sporadic simple group.
Original entry on oeis.org
1, 2, 1, 1, 1, 3, 3, 1, 5, 3, 1, 1, 4, 3, 7, 6, 4, 5, 4, 1, 6, 12, 6, 9, 12, 20
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. See page 238.
A321224
Sporadic numbers: n is defined to be sporadic if the set of groups G not in {A_n, S_n} and having a core-free maximal subgroup of index n is nonempty and contains only sporadic simple groups.
Original entry on oeis.org
266, 506, 759, 1045, 1288, 1463, 3795
Offset: 1
- The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.3, 2018. gap-system.org.
-
IsSporadic:=function(G)
if not IsSimple(G) then
return false;
else
return IsomorphismTypeInfoFiniteSimpleGroup(G).series="Spor";
fi;
end;;
SporadicNumbers:=function(b1,b2)
local L,i,n,a,j,G;
L:=[];
for i in [b1..b2] do
n:=NrPrimitiveGroups(i);
if n>2 then
a:=0;
for j in [1..n] do
G:=PrimitiveGroup(i,j);
if not G=SymmetricGroup(i) and not G=AlternatingGroup(i) and not IsSporadic(G) then
a:=1;
break;
fi;
od;
if a=0 then
Add(L,i);
fi;
fi;
od;
return L;
end;;
SporadicNumbers(1,4095);
# gives: [ 266, 506, 759, 1045, 1288, 1463, 3795 ]
Showing 1-2 of 2 results.
Comments