A261717
Arrange the 26 sporadic simple groups in increasing order; a(n) = number of sporadic simple groups of which the n-th largest sporadic simple group is a subquotient.
Original entry on oeis.org
19, 12, 2, 16, 4, 10, 7, 1, 5, 7, 3, 1, 3, 1, 3, 4, 5, 3, 1, 3, 4, 2, 1, 2, 2, 1
Offset: 1
The sporadic group Fi_23 is a subquotient of the sporadic groups Fi_23 (itself), Fi_24, the Baby Monster and the Monster, so a(21) = 4.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. Page 238.
A321224
Sporadic numbers: n is defined to be sporadic if the set of groups G not in {A_n, S_n} and having a core-free maximal subgroup of index n is nonempty and contains only sporadic simple groups.
Original entry on oeis.org
266, 506, 759, 1045, 1288, 1463, 3795
Offset: 1
- The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.3, 2018. gap-system.org.
-
IsSporadic:=function(G)
if not IsSimple(G) then
return false;
else
return IsomorphismTypeInfoFiniteSimpleGroup(G).series="Spor";
fi;
end;;
SporadicNumbers:=function(b1,b2)
local L,i,n,a,j,G;
L:=[];
for i in [b1..b2] do
n:=NrPrimitiveGroups(i);
if n>2 then
a:=0;
for j in [1..n] do
G:=PrimitiveGroup(i,j);
if not G=SymmetricGroup(i) and not G=AlternatingGroup(i) and not IsSporadic(G) then
a:=1;
break;
fi;
od;
if a=0 then
Add(L,i);
fi;
fi;
od;
return L;
end;;
SporadicNumbers(1,4095);
# gives: [ 266, 506, 759, 1045, 1288, 1463, 3795 ]
Showing 1-2 of 2 results.
Comments