A261737 Number of partitions of n where each part i is marked with a word of length i over a ternary alphabet whose letters appear in alphabetical order.
1, 3, 15, 55, 216, 729, 2621, 8535, 28689, 91749, 296538, 929712, 2939063, 9093255, 28257123, 86681608, 266368959, 811501848, 2475331535, 7505567037, 22772955015, 68828023329, 208079886258, 627418618533, 1892181244828, 5696253823476, 17149663331259
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+2, 2)))) end: a:= n-> b(n$2): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]*Binomial[i + 2, 2]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 24 2018, translated from Maple *)
Formula
a(n) ~ c * 3^n, where c = Product_{k>=2} 1/(1 - (k+1)*(k+2)/(2*3^k)) = 6.84620607349852135789816336867607014231681538613599316638081993041973716978... . - Vaclav Kotesovec, Nov 15 2016, updated May 10 2021
G.f.: Product_{k>=1} 1 / (1 - binomial(k+2,2)*x^k). - Ilya Gutkovskiy, May 09 2021