A261740 Number of partitions of n where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order.
1, 6, 57, 398, 2955, 19158, 130453, 820554, 5280204, 32711022, 204324819, 1249546656, 7682267669, 46625705988, 283766862009, 1714704081724, 10374896682273, 62511439251768, 376943252871343, 2267304042230202, 13643684237963994, 81983795625450144
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=6 of A261718.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+5, 5)))) end: a:= n-> b(n$2): seq(a(n), n=0..30);
Formula
a(n) ~ c * 6^n, where c = Product_{k>=2} 1/(1 - binomial(k+5,5)/6^k) = 3.760725122262068858184072984846959348360490081749654779894152320389687335... - Vaclav Kotesovec, Oct 11 2017, updated May 10 2021
G.f.: Product_{k>=1} 1 / (1 - binomial(k+5,5)*x^k). - Ilya Gutkovskiy, May 09 2021