A261763 Triangle read by rows: T(n,k) is the number of subpermutations of an n-set whose orbits are each of size at most k.
1, 1, 2, 1, 4, 7, 1, 8, 26, 34, 1, 16, 115, 179, 209, 1, 32, 542, 1102, 1402, 1546, 1, 64, 2809, 7609, 10759, 12487, 13327, 1, 128, 15374, 56534, 92234, 113402, 125162, 130922, 1, 256, 89737, 457993, 865393, 1139569, 1304209, 1396369, 1441729
Offset: 0
Examples
T(3, 2) = 26 because there are 26 subpermutations on {1,2,3}, each of whose orbit is of size at most 2, namely: Empty map, 1-->1, 1-->2, 1-->3, 2-->1, 2-->2, 2-->3, 3-->1, 3-->2, 3-->3, (1,2) --> (1,2), (1,3) --> (1,3), (2,3) --> (2,3), (1,2) --> (2,1), (1,3) --> (3,1), (2,3) --> (3,2), (1,2) --> (1,3), (1,3) --> (1,2), (2,3) --> (2,1), (1,2) --> (3,2), (1,3) --> (2,3), (2,3) --> (1,3), (1,2,3) --> (1,3,2), (1,2,3) --> (3,2,1), (1,2,3) --> (2,1,3), (1,2,3) --> (1,2,3). Triangle starts: 1; 1, 2; 1, 4, 7; 1, 8, 26, 34; 1, 16, 115, 179, 209; ...
References
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
Formula
Extensions
More terms from Alois P. Heinz, Oct 07 2015