cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261768 a(n) = phi(n)^n - n^phi(n), where phi(n) is Euler's totient function.

Original entry on oeis.org

0, -1, -1, 0, 399, 28, 162287, 61440, 9546255, 1038576, 74062575399, 16756480, 83695120256591, 78356634560, 35181809198207, 281470681743360, 246486713303685957375, 101559922656192, 604107995057426434824791, 1152921479006846976
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 31 2015

Keywords

Comments

a(n) < n^n/e. If n is prime, a(n)/n^n = (1-1/n)^n - 1/n -> 1/e as n -> infinity. - Robert Israel, Sep 18 2015

Crossrefs

Programs

  • Magma
    [EulerPhi(n)^n-n^EulerPhi(n): n in [1..20]]; // Vincenzo Librandi, Sep 01 2015
  • Maple
    seq(numtheory:-phi(n)^n - n^numtheory:-phi(n),n=1..30); # Robert Israel, Sep 18 2015
  • Mathematica
    Table[EulerPhi[n]^n - n^EulerPhi[n], {n, 1, 20}]
  • PARI
    a(n) = eulerphi(n)^n - n^eulerphi(n) \\ Anders Hellström, Aug 31 2015
    

Formula

a(n) = A000010(n)^n - n^A000010(n) = A000010(n)^n - A062981(n).