cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261800 Number of 8-compositions of n: matrices with 8 rows of nonnegative integers with positive column sums and total element sum n.

Original entry on oeis.org

1, 8, 100, 1208, 14554, 175352, 2112772, 25456328, 306717703, 3695574048, 44527157584, 536497912672, 6464145163032, 77885061063584, 938419943222768, 11306815168562400, 136233325153964242, 1641445323534504928, 19777413104380161776, 238293693669343744032
Offset: 0

Views

Author

Alois P. Heinz, Sep 01 2015

Keywords

Comments

Also the number of compositions of n where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order.

Crossrefs

Column k=8 of A261780.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-j)*binomial(j+7, 7), j=1..n))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x)^8/(2(1-x)^8-1),{x,0,30}],x] (* or  *) LinearRecurrence[{16,-56,112,-140,112,-56,16,-2},{1,8,100,1208,14554,175352,2112772,25456328,306717703},30] (* Harvey P. Dale, Jul 15 2023 *)

Formula

G.f.: (1-x)^8/(2*(1-x)^8-1).
a(n) = A261780(n,8).
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+8*k,n). - Seiichi Manyama, Aug 06 2024