A261800 Number of 8-compositions of n: matrices with 8 rows of nonnegative integers with positive column sums and total element sum n.
1, 8, 100, 1208, 14554, 175352, 2112772, 25456328, 306717703, 3695574048, 44527157584, 536497912672, 6464145163032, 77885061063584, 938419943222768, 11306815168562400, 136233325153964242, 1641445323534504928, 19777413104380161776, 238293693669343744032
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..925
- Index entries for linear recurrences with constant coefficients, signature (16,-56,112,-140,112,-56,16,-2).
Crossrefs
Column k=8 of A261780.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(j+7, 7), j=1..n)) end: seq(a(n), n=0..20);
-
Mathematica
CoefficientList[Series[(1-x)^8/(2(1-x)^8-1),{x,0,30}],x] (* or *) LinearRecurrence[{16,-56,112,-140,112,-56,16,-2},{1,8,100,1208,14554,175352,2112772,25456328,306717703},30] (* Harvey P. Dale, Jul 15 2023 *)
Formula
G.f.: (1-x)^8/(2*(1-x)^8-1).
a(n) = A261780(n,8).
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+8*k,n). - Seiichi Manyama, Aug 06 2024
Comments