A261858 Number of compositions of n into distinct parts where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order and all letters occur at least once in the composition.
757, 13671, 148638, 5623044, 19334910, 115231480, 522931570, 2868333476, 63481817735, 156363633615, 661651830728, 2317522429544, 8940138012274, 34465610055870, 703252581037436, 1456494080466446, 5428978793488341, 16082092961535517, 53836540488601696
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..2500
Crossrefs
Column k=7 of A261836.
Programs
-
Maple
b:= proc(n, i, p, k) option remember; `if`(i*(i+1)/2
n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1)))) end: a:= n->(k->add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k))(7): seq(a(n), n=7..30);
Formula
a(n) = A261836(n,7).
Comments