cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002972 a(n) is the odd member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.

Original entry on oeis.org

1, 3, 1, 5, 1, 5, 7, 5, 3, 5, 9, 1, 3, 7, 11, 7, 11, 13, 9, 7, 1, 15, 13, 15, 1, 13, 9, 5, 17, 13, 11, 9, 5, 17, 7, 17, 19, 1, 3, 15, 17, 7, 21, 19, 5, 11, 21, 19, 13, 1, 23, 5, 17, 19, 25, 13, 25, 23, 1, 5, 15, 27, 9, 19, 25, 17, 11, 5, 25, 27, 23, 29, 29, 25, 23, 19, 29, 13, 31, 31
Offset: 1

Views

Author

Keywords

Comments

It appears that the terms in this sequence are the absolute values of the terms in A046730. - Gerry Myerson, Dec 02 2010
"the n-th prime of the form 4i+1" is A005098(n). - Rainer Rosenthal, Aug 24 2022

Examples

			The 2nd prime of the form 4i+1 is 13 = 2^2 + 3^2, so a(2)=3.
		

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pmax = 1000; odd[p_] := Module[{k, m}, 2m+1 /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    decomp2sq(p) = {my (m=(p-1)/4, r, x, limit=ceil(sqrt(p))); if (p>4 && denominator(m)==1, forprime (c=2,oo, if (!issquare(Mod(c,p)), r=c; break)); x=lift (Mod(r,p)^m); until (px%2,decomp2sq(p))[1],", "))) \\ Hugo Pfoertner, Aug 27 2022

Formula

a(n) = Min(A173330(n), A002144(n) - A173330(n)). - Reinhard Zumkeller, Feb 16 2010
a(n)^2 + 4*A002973(n)^2 = A002144(n); A002331(n+1) = Min(a(n),2*A002973(n)) and A002330(n+1) = Max(a(n),2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
(a(n) - 1)/2 = A208295(n), n >= 1. - Wolfdieter Lang, Mar 03 2012
a(A267858(k)) == 1 (mod 4), k >= 1. - Wolfdieter Lang, Feb 18 2016

Extensions

Better description from Jud McCranie, Mar 05 2003

A261836 Number T(n,k) of compositions of n into distinct parts where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the composition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 10, 7, 0, 3, 15, 21, 9, 0, 5, 40, 96, 92, 31, 0, 11, 183, 832, 1562, 1305, 403, 0, 13, 266, 1539, 3908, 4955, 3090, 757, 0, 19, 549, 4281, 14791, 26765, 26523, 13671, 2873, 0, 27, 1056, 10902, 50208, 124450, 178456, 148638, 66904, 12607
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2015

Keywords

Comments

Also number of matrices with k rows of nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to n and the column sums are distinct.

Examples

			T(3,2) = 10: (matrices and corresponding marked compositions are given)
  [2]   [1]   [2 0]  [0 2]  [1 0]  [0 1]  [1 1]  [1 1]  [1 0]  [0 1]
  [1]   [2]   [0 1]  [1 0]  [0 2]  [2 0]  [1 0]  [0 1]  [1 1]  [1 1]
  3aab, 3abb, 2aa1b, 1b2aa, 1a2bb, 2bb1a, 2ab1a, 1a2ab, 2ab1b, 1b2ab.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,   1;
  0,  3,  10,    7;
  0,  3,  15,   21,     9;
  0,  5,  40,   96,    92,    31;
  0, 11, 183,  832,  1562,  1305,   403;
  0, 13, 266, 1539,  3908,  4955,  3090,   757;
  0, 19, 549, 4281, 14791, 26765, 26523, 13671, 2873;
		

Crossrefs

Columns k=0-10 give: A000007, A032020 (for n>0), A261853, A261854, A261855, A261856, A261857, A261858, A261859, A261860, A261861.
Main diagonal gives A032011.
Row sums give A261838.
T(2n,n) gives A261828.

Programs

  • Maple
    b:= proc(n, i, p, k) option remember;
          `if`(i*(i+1)/2n, 0, b(n-i, i-1, p+1, k)*binomial(i+k-1, k-1))))
        end:
    T:= (n, k)-> add(b(n$2, 0, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] = If[i*(i+1)/2n, 0, b[n-i, i-1, p+1, k]*Binomial[i+k-1, k-1]]]]; T[n_, k_] := Sum[b[n, n, 0, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261835(n,k-i).
Showing 1-2 of 2 results.