cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A279392 Bisection of primes congruent to 1 modulo 4 (A002144), depending on the corresponding sum of the A002972 and 2*A002973 entries being congruent to 1 modulo 4 or not. Here we give the first case.

Original entry on oeis.org

13, 17, 41, 53, 89, 97, 109, 149, 157, 229, 233, 257, 281, 313, 317, 337, 353, 373, 397, 401, 421, 433, 457, 461, 557, 569, 577, 601, 641, 709, 733, 769, 797, 809, 829, 853, 857, 881, 953, 997, 1013, 1021, 1049, 1061, 1097, 1153, 1193, 1201, 1213, 1229, 1277, 1297
Offset: 1

Views

Author

Wolfdieter Lang, Dec 11 2016

Keywords

Comments

The primes from A002144 (1 (mod 4) primes) have the property A002144(n) = A002972(n)^2 + (2*A002973(n))^2 = A(n)^2 + B(n)^2 with odd A(n) and even B(n). A bisection of A002144 is given depending on A(n) + B(n) == 1 (mod 4) (part I) or A(n) + B(n) == 3 (mod 4) (part II). The present sequence gives part I of this bisection. The other part II is given in A279393.
This bisection appears in the formula for the p-defects of the congruence y^2 == x^3 + 4*x (mod p) for primes p == 1 (mod 4). See A278720 where for nonvanishing entries the sign is conjectured to be + for these part I primes, and it is - for the part II primes from A279393.

Examples

			a(1) = 13 is the first prime from A002144 which has A + B = 1 (mod 4) because 13 = A002144(2) = A(2)^2 + B(2)^2 = 3^2 + (2*1)^2, and 3 + 2 = 5 == 1 (mod 4), and A002144(1) = 5 leads to A + B = 3 (mod 4), because 5 = 1^2 + (2*1)^2.
		

Crossrefs

Formula

A prime A002144(m) = A(m)^2 + B(m)^2 belongs to this sequence iff (-1)^((A(m)-1)/2 + B(m)/2) = +1, where A(m) = A002972(m) and B(m)/2 = A002973(m).

Extensions

More terms from Jinyuan Wang, Apr 20 2025

A279393 Bisection of primes congruent to 1 modulo 4 (A002144), depending on the corresponding sum of the A002972 and 2*A002973 entries being congruent to 1 modulo 4 or not. Here we give the second case.

Original entry on oeis.org

5, 29, 37, 61, 73, 101, 113, 137, 173, 181, 193, 197, 241, 269, 277, 293, 349, 389, 409, 449, 509, 521, 541, 593, 613, 617, 653, 661, 673, 677, 701, 757, 761, 773, 821, 877, 929, 937, 941, 977, 1009, 1033, 1069, 1093, 1109, 1117, 1129, 1181, 1217, 1237, 1249, 1289
Offset: 1

Views

Author

Wolfdieter Lang, Dec 11 2016

Keywords

Comments

See A279392 for details of this bisection of the primes of A002144. This sequence gives the part II of primes congruent 1 modulo 4.

Examples

			a(1) = 5 = A002144(1) and A002972(1) = 1 and 2*A002973(1) = 2, hence 1 + 2 = 3 == 3 (mod 4), and 5 belongs to part II of this bisection.
		

Crossrefs

Formula

A prime A002144(m) = A(m)^2 + B(m)^2 belongs to this sequence iff (-1)^((A(m)-1)/2 + B(m)/2) = -1, where A(m) = A002972(m) and B(m)/2 = A002973(m).

Extensions

More terms from Jinyuan Wang, Apr 20 2025

A267858 Positions of entries of A002972 that are congruent to 1 modulo 4.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 10, 11, 12, 18, 19, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 53, 55, 56, 57, 59, 60, 63, 65, 66, 68, 69, 72, 73, 74, 77, 78, 85, 87, 88, 89, 90, 91, 93, 94, 95, 96, 100, 104, 105, 106, 108, 110, 112, 115, 119, 120, 122, 127, 128, 131
Offset: 1

Views

Author

Wolfdieter Lang, Feb 06 2016

Keywords

Comments

This sequence is needed for the number of solutions modulo primes congruent to 1 modulo 4 of the elliptic curve y^2 = x^3 + x See A095978.
If a positive integer m is not in this sequence then A002972(m) == 3 (mod 4).

Examples

			n=1: A002972(1) = 1 == 1 (mod 4). But because m = 2 is not in this sequence A002972(2) = 3 == 3 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    pmax = 2000; odd[p_] := Module[{k, m}, 2m+1 /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; Reap[For[n=1; p=5, p < pmax, p = NextPrime[p], If[Mod[p, 4]==1, If[Mod[odd[p], 4]==1, Sow[n]]; n++]]][[2, 1]] (* Jean-François Alcover, Feb 26 2016 *)

Formula

A002972(a(n)) == 1 (mod 4), n >= 1.

A002144 Pythagorean primes: primes of the form 4*k + 1.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617
Offset: 1

Views

Author

Keywords

Comments

Rational primes that decompose in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
These are the prime terms of A009003.
-1 is a quadratic residue mod a prime p if and only if p is in this sequence.
Sin(a(n)*Pi/2) = 1 with Pi = 3.1415..., see A070750. - Reinhard Zumkeller, May 04 2002
If at least one of the odd primes p, q belongs to the sequence, then either both or neither of the congruences x^2 = p (mod q), x^2 = q (mod p) are solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Odd primes such that binomial(p-1, (p-1)/2) == 1 (mod p). - Benoit Cloitre, Feb 07 2004
Primes that are the hypotenuse of a right triangle with integer sides. The Pythagorean triple is {A002365(n), A002366(n), a(n)}.
Also, primes of the form a^k + b^k, k > 1. - Amarnath Murthy, Nov 17 2003
The square of a(n) is the average of two other squares. This fact gives rise to a class of monic polynomials x^2 + bx + c with b = a(n) that will factor over the integers regardless of the sign of c. See A114200. - Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
Also such primes p that the last digit is always 1 for the Nexus numbers of form n^p - (n-1)^p. - Alexander Adamchuk, Aug 10 2006
The set of Pythagorean primes is a proper subset of the set of positive fundamental discriminants (A003658). - Paul Muljadi, Mar 28 2008
A079260(a(n)) = 1; complement of A137409. - Reinhard Zumkeller, Oct 11 2008
From Artur Jasinski, Dec 10 2008: (Start)
If we take 4 numbers: 1, A002314(n), A152676(n), A152680(n) then multiplication table modulo a(n) is isomorphic to the Latin square:
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i is sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i. 1, A002314(n), A152676(n), A152680(n) are subfield of Galois field [a(n)]. (End)
Primes p such that the arithmetic mean of divisors of p^3 is an integer. There are 2 sequences of such primes: this one and A002145. - Ctibor O. Zizka, Oct 20 2009
Equivalently, the primes p for which the smallest extension of F_p containing the square roots of unity (necessarily F_p) contains the 4th roots of unity. In this respect, the n = 2 case of a family of sequences: see n=3 (A129805) and n=5 (A172469). - Katherine E. Stange, Feb 03 2010
Subsequence of A007969. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = 1.
k^k - 1 is divisible by 4*k + 1 if 4*k + 1 is a prime (see Dickson reference). - Gary Detlefs, May 22 2013
Not only are the squares of these primes the sum of two nonzero squares, but the primes themselves are also. 2 is the only prime equal to the sum of two nonzero squares and whose square is not. 2 is therefore not a Pythagorean prime. - Jean-Christophe Hervé, Nov 10 2013
The statement that these primes are the sum of two nonzero squares follows from Fermat's theorem on the sum of two squares. - Jerzy R Borysowicz, Jan 02 2019
The decompositions of the prime and its square into two nonzero squares are unique. - Jean-Christophe Hervé, Nov 11 2013. See the Dickson reference, Vol. II, (B) on p. 227. - Wolfdieter Lang, Jan 13 2015
p^e for p prime of the form 4*k+1 and e >= 1 is the sum of 2 nonzero squares. - Jon Perry, Nov 23 2014
Primes p such that the area of the isosceles triangle of sides (p, p, q) for some integer q is an integer. - Michel Lagneau, Dec 31 2014
This is the set of all primes that are the average of two squares. - Richard R. Forberg, Mar 01 2015
Numbers k such that ((k-3)!!)^2 == -1 (mod k). - Thomas Ordowski, Jul 28 2016
This is a subsequence of primes of A004431 and also of A016813. - Bernard Schott, Apr 30 2022
In addition to the comment from Jean-Christophe Hervé, Nov 10 2013: All powers as well as the products of any of these primes are the sum of two nonzero squares. They are terms of A001481, which is closed under multiplication. - Klaus Purath, Nov 19 2023

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2 + d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2 - a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
  ...
a(7) = 53 = A002972(7)^2 + (2*A002973(7))^2 = 7^2 + (2*1)^2 = 49 + 4, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. E. Dickson, "History of the Theory of Numbers", Chelsea Publishing Company, 1919, Vol I, page 386
  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 241, 243.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Cf. A004613 (multiplicative closure).
Apart from initial term, same as A002313.
For values of n see A005098.
Primes in A020668.

Programs

  • Haskell
    a002144 n = a002144_list !! (n-1)
    a002144_list = filter ((== 1) . a010051) [1,5..]
    -- Reinhard Zumkeller, Mar 06 2012, Feb 22 2011
    
  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4*n + 1 ]; // Vincenzo Librandi, Nov 23 2014
    
  • Maple
    a := []; for n from 1 to 500 do if isprime(4*n+1) then a := [op(a),4*n+1]; fi; od: A002144 := n->a[n];
    # alternative
    A002144 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+4 by 4 do
                if isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002144(n),n=1..100) ; # R. J. Mathar, Jan 31 2024
  • Mathematica
    Select[4*Range[140] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 16 2006 *)
    Select[Prime[Range[150]],Mod[#,4]==1&] (* Harvey P. Dale, Jan 28 2021 *)
  • PARI
    select(p->p%4==1,primes(1000))
    
  • PARI
    A002144_next(p=A2144[#A2144])={until(isprime(p+=4),);p} /* NB: p must be of the form 4k+1. Beyond primelimit, this is *much* faster than forprime(p=...,, p%4==1 && return(p)). */
    A2144=List(5); A002144(n)={while(#A2144A002144_next())); A2144[n]}
    \\ M. F. Hasler, Jul 06 2024
    
  • Python
    from sympy import prime
    A002144 = [n for n in (prime(x) for x in range(1,10**3)) if not (n-1) % 4]
    # Chai Wah Wu, Sep 01 2014
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, range(1, 618, 4)))) # Michael S. Branicky, May 13 2021
    
  • SageMath
    def A002144_list(n): # returns all Pythagorean primes <= n
        return [x for x in prime_range(5,n+1) if x % 4 == 1]
    A002144_list(617) # Peter Luschny, Sep 12 2012

Formula

Odd primes of form x^2 + y^2, (x=A002331, y=A002330, with x < y) or of form u^2 + 4*v^2, (u = A002972, v = A002973, with u odd). - Lekraj Beedassy, Jul 16 2004
p^2 - 1 = 12*Sum_{i = 0..floor(p/4)} floor(sqrt(i*p)) where p = a(n) = 4*n + 1. [Shirali]
a(n) = A000290(A002972(n)) + A000290(2*A002973(n)) = A000290(A002331(n+1)) + A000290(A002330(n+1)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A002972(n)^2 + (2*A002973(n))^2, n >= 1. See the Jean-Christophe Hervé Nov 11 2013 comment. - Wolfdieter Lang, Jan 13 2015
a(n) = 4*A005098(n) + 1. - Zak Seidov, Sep 16 2018
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A088539.
Product_{k>=1} (1 + 1/a(k)^2) = A243380.
Product_{k>=1} (1 - 1/a(k)^3) = A334425.
Product_{k>=1} (1 + 1/a(k)^3) = A334424.
Product_{k>=1} (1 - 1/a(k)^4) = A334446.
Product_{k>=1} (1 + 1/a(k)^4) = A334445.
Product_{k>=1} (1 - 1/a(k)^5) = A334450.
Product_{k>=1} (1 + 1/a(k)^5) = A334449. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/A002145(k)) / (1 + 1/a(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/A002145(k)) / (1 - 1/a(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log((2*n*s)! * zeta(n*s) * abs(EulerE(n*s - 1)) / (Pi^(n*s) * 2^(2*n*s) * BernoulliB(2*n*s) * (2^(n*s) + 1) * (n*s - 1)!))/n, s >= 3 odd number. - Dimitris Valianatos, May 21 2020
Legendre symbol (-1, a(n)) = +1, for n >= 1. - Wolfdieter Lang, Mar 03 2021

A002330 Value of y in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 6, 8, 8, 9, 10, 10, 8, 11, 10, 11, 13, 10, 12, 14, 15, 13, 15, 16, 13, 14, 16, 17, 13, 14, 16, 18, 17, 18, 17, 19, 20, 20, 15, 17, 20, 21, 19, 22, 20, 21, 19, 20, 24, 23, 24, 18, 19, 25, 22, 25, 23, 26, 26, 22, 27, 26, 20, 25, 22, 26, 28, 25
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := []; for x from 0 to 50 do for y from x to 50 do p := x^2+y^2; if isprime(p) then a := [op(a),[p,x,y]]; fi; od: od: writeto(trans); for i from 1 to 158 do lprint(a[i]); od: # then sort the triples in "trans"
  • Mathematica
    Flatten[#, 1]&[Table[PowersRepresentations[Prime[k], 2, 2], {k, 1, 142}]][[All, 2]] (* Jean-François Alcover, Jul 05 2011 *)
  • PARI
    f(p)=my(s=lift(sqrt(Mod(-1,p))),x=p,t);if(s>p/2,s=p-s); while(s^2>p, t=s;s=x%s;x=t);s
    forprime(p=2,1e3,if(p%4-3,print1(f(p)", "))) \\ Charles R Greathouse IV, Apr 24 2012
    
  • PARI
    do(p)=qfbsolve(Qfb(1,0,1),p)[1]
    forprime(p=2,1e3,if(p%4-3,print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013
    
  • PARI
    print1(1); forprimestep(p=5,1e3,4, print1(", "qfbcornacchia(1,p)[1])) \\ Charles R Greathouse IV, Sep 15 2021

Formula

a(n) = A096029(n) + A096030(n) + 1, for n>1. - Lekraj Beedassy, Jul 21 2004
a(n+1) = Max(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010

A005098 Numbers k such that 4k + 1 is prime.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 13, 15, 18, 22, 24, 25, 27, 28, 34, 37, 39, 43, 45, 48, 49, 57, 58, 60, 64, 67, 69, 70, 73, 78, 79, 84, 87, 88, 93, 97, 99, 100, 102, 105, 108, 112, 114, 115, 127, 130, 135, 139, 142, 144, 148, 150, 153, 154, 160, 163, 165, 168, 169, 175, 177, 183
Offset: 1

Views

Author

Keywords

Comments

Sum of i-th and j-th triangular numbers, where i=A096029(n), j=A096030(n); i.e., a(n) = A000217(A096029(n)) + A000217(A096030(n)). - Lekraj Beedassy, Jun 16 2004
For every k in the sequence, there is exactly 1 square number that can be subtracted to leave a pronic (A002378). E.g., 27 - 25 = 2, 99 - 9 = 90. - Jon Perry, Nov 06 2010
See A208295 for details concerning the preceding Jon Perry comment. - Wolfdieter Lang, Mar 29 2012
a(k) appears in the o.g.f. for floor(A002144(k)*j^2/4), j >= 0, for k >= 1: x*(a(k)*(1 + x^2) + b(k)*x)/((1 - x)^3*(1 + x)), together with b(k) = (A002144(k) + 1)/2 = A119681(k). - Wolfdieter Lang, Aug 07 2013

Crossrefs

See A002144 for the actual primes.

Programs

  • Haskell
    a005098 = (`div` 4) . (subtract 1) . a002144
    -- Reinhard Zumkeller, Mar 17 2013
  • Magma
    [k: k in [0..10000] | IsPrime(4*k+1)] // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    a := []; for k from 1 to 500 do if isprime(4*k+1) then a := [op(a), k]; fi; od: A005098 := k->a[k];
  • Mathematica
    Select[Range[200], PrimeQ[4# + 1] &] (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    is(k)=isprime(4*k+1) \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = (A002144(n)-1)/4.

Extensions

More terms from Ray Chandler, Jun 26 2004
Edited by Charles R Greathouse IV, Mar 17 2010

A002331 Values of x in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 4, 2, 5, 3, 5, 4, 1, 3, 7, 4, 7, 6, 2, 9, 7, 1, 2, 8, 4, 1, 10, 9, 5, 2, 12, 11, 9, 5, 8, 7, 10, 6, 1, 3, 14, 12, 7, 4, 10, 5, 11, 10, 14, 13, 1, 8, 5, 17, 16, 4, 13, 6, 12, 1, 5, 15, 2, 9, 19, 12, 17, 11, 5, 14, 10, 18, 4, 6, 16, 20, 19, 10, 13, 4, 6, 15, 22, 11, 3, 5
Offset: 1

Views

Author

Keywords

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
		

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002330, A002313, A002144, A027862 (locates y=x+1).

Programs

  • Maple
    See A002330 for Maple program.
    # alternative
    A002331 := proc(n)
        A363051(A002313(n)) ;
    end proc:
    seq(A002331(n),n=1..100) ; # R. J. Mathar, Feb 01 2024
  • Mathematica
    pmax = 1000; x[p_] := Module[{x, y}, x /. ToRules[Reduce[0 <= x <= y && x^2 + y^2 == p, {x, y}, Integers]]]; For[n=1; p=2, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    f(p)=my(s=lift(sqrt(Mod(-1,p))),x=p,t);if(s>p/2,s=p-s); while(s^2>p,t=s;s=x%s;x=t);s
    forprime(p=2,1e3,if(p%4-3,print1(sqrtint(p-f(p)^2)", ")))
    \\ Charles R Greathouse IV, Apr 24 2012
    
  • PARI
    do(p)=qfbsolve(Qfb(1,0,1),p)[2]
    forprime(p=2,1e3,if(p%4-3,print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013

Formula

a(n) = A096029(n) - A096030(n) for n > 1. - Lekraj Beedassy, Jul 16 2004
a(n+1) = Min(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A363051(A002313(n)). - R. J. Mathar, Jan 31 2024

A002973 a(n) is half of the even member of {x,y}, where x^2 + y^2 is the n-th prime of the form 4i+1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 4, 4, 2, 5, 5, 4, 2, 5, 3, 1, 5, 6, 7, 1, 4, 2, 8, 5, 7, 8, 1, 6, 7, 8, 9, 4, 9, 5, 3, 10, 10, 7, 6, 10, 2, 5, 11, 10, 5, 7, 10, 12, 4, 12, 9, 8, 2, 11, 3, 6, 13, 13, 11, 1, 13, 10, 6, 11, 13, 14, 7, 5, 9, 2, 3, 8, 10, 12, 5, 14, 2, 3, 14, 11, 15, 16, 16, 5, 15, 1, 8, 11
Offset: 1

Views

Author

Keywords

Comments

a(n) is odd iff x^2 + y^2 == 5 (mod 8). [Vladimir Shevelev, Jul 12 2009]
A002972(n)^2 + 4*a(n)^2 = A002144(n); A002331(n+1) = Min(A002972(n),2*a(n)) and A002330(n+1) = Max(A002972(n),2*a(n)). [Reinhard Zumkeller, Feb 16 2010]

Examples

			The 3rd prime of the form 4i+1 is 17 = 1^2 + 4^2, so a(3) = 4/2 = 2.
		

References

  • E. Kogbetliantz and A. Krikorian, Handbook of First Complex Prime Numbers, Gordon and Breach, NY, 1971, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pmax = 1000; k[p_] := Module[{k, m}, k /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; For[n=1; p=5, pJean-François Alcover, Feb 26 2016 *)
  • PARI
    \\ use function decomp2sq from A002972
    forprime (p=5, 1000, if (p%4==1, print1(select(x->!(x%2),decomp2sq(p))[1]/2,", "))) \\ Hugo Pfoertner, Aug 27 2022

Formula

a(n) = Min(A173331(n), A002144(n) - A173331(n)) / 2. [Reinhard Zumkeller, Feb 16 2010]

Extensions

Better description from Jud McCranie, Mar 05 2003

A095978 Number of solutions to y^2=x^3+x (mod p) as p runs through the primes.

Original entry on oeis.org

2, 3, 3, 7, 11, 19, 15, 19, 23, 19, 31, 35, 31, 43, 47, 67, 59, 51, 67, 71, 79, 79, 83, 79, 79, 99, 103, 107, 115, 127, 127, 131, 159, 139, 163, 151, 179, 163, 167, 147, 179, 163, 191, 207, 195, 199, 211, 223, 227, 259, 207, 239, 271, 251, 255, 263
Offset: 1

Views

Author

Lekraj Beedassy, Jul 16 2004

Keywords

Comments

The only rational solution of y^2 = x^3 + x is (y, x) = (0, 0). See the Silverman reference, Theorem 44.1 with a proof on pp. 388 - 390 (in the 4th edition, 2014, Theorem 1, pp. 354 - 356). - Wolfdieter Lang, Feb 08 2016
This is also the number of solutions to y^2 = x^3 - 4*x (mod p) as p runs through the primes. - Seiichi Manyama, Sep 16 2016

Examples

			n = 21: prime(21) = A000040(21) = 73 = A002144(9)  == 1 (mod 4), A002972(9) = 3 == 3 (mod 4) (not 1 (mod 4)), a(n) = 73 + 2*3 = 79.
n = 22: prime(22) = A000040(22) = 79 == 3 (mod 4), a(n) = prime(22) = 79.
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Theorem 45.1 on p. 399. In the 4th edition, 2014, Theorem 1 on p. 365.

Crossrefs

Programs

  • Maple
    a:= proc(n)
      local p, xy, x;
      p:= ithprime(n);
      if p mod 4 = 3 then return p fi;
      xy:= [Re,Im](GaussInt:-GIfactors(p)[2][1][1]);
      x:= op(select(type,xy,odd));
      if x mod 4 = 1 then p - 2*x else p + 2*x fi
    end proc:
    a(1):= 2:
    map(a, [$1..100]); # Robert Israel, Feb 09 2016
  • Mathematica
    a[n_] := Module[{p, xy, x}, p = Prime[n]; If[Mod[p, 4]==3, Return[p]]; xy = {Re[#], Im[#]}& @ FactorInteger[p, GaussianIntegers -> True][[2, 1]]; x = SelectFirst[xy, OddQ]; If[Mod[x, 4]==1, p - 2*x, p + 2*x]]; a[1] = 2; Array[a, 100] (* Jean-François Alcover, Feb 26 2016, after Robert Israel*)

Formula

a(1) = 2; if prime(n) == 3 (mod 4) then a(n) = prime(n); if prime(n) = A002144(m) then if A002972(m) == 1 (mod 4) then a(n) = prime(n) - 2*A002972(m), otherwise a(n) = prime(n) + 2*A002972(m).

Extensions

Edited. Update of reference, formula corrected, examples given, and a(21) - a(56) from Wolfdieter Lang, Feb 06 2016

A173330 First of two intermediate sequences for integral solution of A002144(n)=x^2+y^2.

Original entry on oeis.org

1, 10, 1, 5, 1, 5, 46, 5, 70, 5, 9, 1, 106, 106, 126, 142, 146, 13, 9, 186, 1, 214, 13, 226, 1, 13, 9, 5, 17, 13, 306, 9, 5, 17, 366, 17, 378, 1, 406, 406, 17, 442, 21, 442, 5, 510, 21, 538, 13, 1, 570, 5, 17, 598, 25, 13, 25, 650, 1, 5, 694, 706, 9, 742, 25, 17, 786, 5, 25
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 16 2010

Keywords

Comments

A002972(n) = MIN(a(n), A002144(n) - a(n)).

Examples

			n=7: A002144(7) = 53 = 4*13 + 1,
a(7) = 26! / (2*(13!)^2) mod 53 = 403291461126605635584000000/77551576087265280000 mod 53 = 5200300 mod 53 = 46,
A002972(7) = MIN(46, 53 - 46) = 7;
n=8: A002144(8) = 61 = 4*15 + 1,
a(8) = 30! / (2*(15!)^2) mod 61 = 265252859812191058636308480000000/3420024505448398848000000 mod 61 = 77558760 mod 61 = 5,
A002972(8) = MIN(5, 61 - 5) = 5.
		

References

  • H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.

Crossrefs

Formula

a(n) = (2k)! / 2(k!)^2 mod p, where p = 4*k+1 = A002144(n).
Showing 1-10 of 15 results. Next