cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138515 Expansion of q^(-1/4) * eta(q^2)^8 / (eta(q) * eta(q^4))^2 in powers of q.

Original entry on oeis.org

1, 2, -3, -6, 2, 0, -1, 10, 0, 2, 10, -6, -7, -14, 0, 10, -12, 0, -6, 0, 9, 4, 10, 0, 18, 2, 0, -6, -14, 18, -11, -12, 0, 0, -22, 0, 20, -14, -6, -22, 0, 0, 23, 26, 0, 18, 4, 0, -14, 2, 0, 20, 0, 0, 0, -12, 3, -30, 26, 0, -30, -14, 0, 0, 2, -30, -28, 26, 0, 18, 10, 0, -13, 34, 0, 0, 20, 0, 26, -22, 0, 6, 0, -6, 18, 0
Offset: 0

Views

Author

Michael Somos, Mar 22 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 58 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 16 2012
The weight 2 eta-quotient newform eta^8(8*z) / (eta^2(4*z)*eta^2(16*z)) appears in Theorem 2 of the Martin and Ono link in the row with conductor 64 for the strong Weil curve y^2 = x^3 - 4*x. For N(p), the number of solutions modulo primes for this elliptic curve and for y^2 = x^3 + x, see A095978. The non-vanishing p-defects p - N(p) for these two curves are given in A267859. - Wolfdieter Lang, May 26 2016

Examples

			G.f. = 1 + 2*x - 3*x^2 - 6*x^3 + 2*x^4 - x^6 + 10*x^7 + 2*x^9 + 10*x^10 - 6*x^11 + ...
G.f. for {b(n)} = q + 2*q^5 - 3*q^9 - 6*q^13 + 2*q^17 - q^25 + 10*q^29 + 2*q^37 + 10*q^41 - 6*q^45 - 7*q^49 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(64), 2), 342); A[1] + 2*A[3]; /* Michael Somos, May 15 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ -q])^2, {q, 0, n}]; (* Michael Somos, May 15 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^4 / (QPochhammer[ q] QPochhammer[ q^4]))^2, {q, 0, n}]; (* Michael Somos, May 15 2015 *)
  • PARI
    {a(n) = ellak( ellinit( [ 0, 0, 0, 1, 0], 1), 4*n + 1)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^4 / (eta(x + A) * eta(x^4 + A)))^2, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p%4==1, forstep( x=1, sqrtint(p), 2, if( issquare( p - x^2), y=x; break)); y = 2 * y * (2 - (y%4)); a0 = 1; a1 = y; for(i=2, e, x = y * a1 - p * a0; a0 = a1; a1 = x); a1, if( e%2==0, (-p)^(e / 2)))))};
    

Formula

Coefficients of L-series for elliptic curve "64a4": y^2 = x^3 + x.
Expansion of f(q)^2 * f(-q^2)^2 = psi(-q)^2 * phi(q)^2 = chi(q)^2 * f(-q^2)^4 = psi(q)^2 * phi(-q^2)^2 = f(q)^4 / chi(q)^2 = f(q)^6 / phi(q)^2 = f(-q^2)^6 / psi(-q)^2 = phi(q)^4 / chi(q)^6 = chi(q)^6 * psi(-q)^4 = f(q)^3 * psi(-q) = f(-q^2)^3 * phi(q) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [2, -6, 2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 64 (t/i)^2 f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p == 1 (mod 4) with b(p) = 2 * x * (-1)^((x-1)/2) where p = x^2 + 4 * y^2.
G.f.: (Product_{k>0} (1 - x^(2*k))^2 * (1 + x^(2*k - 1)))^2.
a(n) = (-1)^n * A002171(n). a(9*n + 2) = -3 * a(n), a(9*n + 5) = a(9*n + 8) = 0. Convolution square of A138514.
G.f. for{b(n)}:
eta^8(8*z)/(eta^2(4*z)*eta^2(16*z)) with q = exp(2*Pi*i*z)), Im(z) > 0 (see a comment on the Martin-Ono link above). - Wolfdieter Lang, May 27 2016

A267859 The p-defect p - N(p) of the elliptic curve y^2 = x^3 + x for primes p congruent to 1 modulo 4 (A002144).

Original entry on oeis.org

2, -6, 2, 10, 2, 10, -14, 10, -6, 10, 18, 2, -6, -14, -22, -14, -22, 26, 18, -14, 2, -30, 26, -30, 2, 26, 18, 10, 34, 26, -22, 18, 10, 34, -14, 34, -38, 2, -6, -30, 34, -14, 42, -38, 10, -22, 42, -38, 26, 2, -46, 10, 34, -38, 50, 26, 50, -46, 2, 10, -30, -54, 18, -38, 50, 34, -22, 10, 50, -54
Offset: 1

Views

Author

Wolfdieter Lang, Feb 06 2016

Keywords

Comments

See A002172 for a differently signed sequence.
The number N(p) of solutions modulo a prime p of the elliptic curve y^2 = x^3 + x (of discriminant -4) is given for all p in A095978.
The p-defect a_p = p - N(p) for prime 2 and primes congruent to 3 modulo 4 vanishes.
A002144(n) - (a(n)/2)^2 = (2*A002973(n))^2, n >= 1. See the formula for A095978 for primes 1 (mod 4).
This sequence gives also the non-vanishing p-defects of the elliptic curve y^2 = x^3 - 4*x. See a comment on A138515 with the Martin and Ono link for the modularity series for these two elliptic curves. - Wolfdieter Lang, May 26 2016

Examples

			n = 2: p = A002144(2) = 13 = A000040(6), m = 6, a(2) = 13 - A095978(6) = 13 - 19  = -6.
n = 2:  -6 = A138515((A002144(2) - 1)/4) =
A138515(3) = -6. - _Wolfdieter Lang_, May 26 2016
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 398. In the 4th ed., 2014, p. 371.

Crossrefs

Programs

  • Mathematica
    terms = 100; A002144 = Select[Range[5, 20*terms, 4], PrimeQ]; A095978[n_] := Module[{p, xy, x}, p = Prime[n]; If[n==1 || Mod[p, 4]==3, Return[p]]; xy = {Re[#], Im[#]}& @ FactorInteger[p, GaussianIntegers -> True][[2, 1]]; x = SelectFirst[xy, OddQ]; If[Mod[x, 4]==1, p - 2*x, p + 2*x]]; a[n_] := (p = A002144[[n]]; m = PrimePi[p]; p - A095978[m]); Array[a, terms] (* Jean-François Alcover, Feb 26 2016, after Robert Israel (A095978) *)

Formula

a(n) = A002144(n) - A095978(m) with A002144(n) = A000040(m), n >= 1.
a(n) = A138515((A002144(n) - 1)/4), n >= 1. - Wolfdieter Lang, May 26 2016

A276730 Number of solutions to y^2 == x^3 + 4*x (mod p) as p runs through the primes.

Original entry on oeis.org

2, 3, 7, 7, 11, 7, 15, 19, 23, 39, 31, 39, 31, 43, 47, 39, 59, 71, 67, 71, 79, 79, 83, 79, 79, 103, 103, 107, 103, 127, 127, 131, 159, 139, 135, 151, 135, 163, 167, 199, 179, 199, 191, 207, 199, 199, 211, 223, 227, 199, 207, 239, 271, 251, 255, 263, 295, 271, 295, 271
Offset: 1

Views

Author

Seiichi Manyama, Sep 16 2016

Keywords

Comments

This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, (eta(4t)*eta(8t))^2, see Theorem 2 in Martin & Ono.
It appears that a(n) = prime(n) iff prime(n) == 2 or 3 (mod 4). - Robert Israel, Sep 28 2016 This is true due to the L-function of this elliptic curve. See A278720. - Wolfdieter Lang, Dec 22 2016
The rational solutions of y^2 = x^3 + 4*x are (x,y) = (0,0), (2,4), (2,-4). See the Keith Conrad link, Corollary 3.17., p. 9. - Wolfdieter Lang, Dec 01 2016
For the p-defects p - N(p) see A278720. - Wolfdieter Lang, Dec 22 2016

Examples

			The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used.
The solutions (x, y) of y^2 == x^3 + 4*x (mod prime(n)) begin:
n, prime(n), a(n)\  solutions (x, y)
1,   2,       2:   (0, 0), (1, 1)
2,   3,       3:   (0, 0), (2, 1), (2, 2)
3,   5,       7:   (0, 0), (1, 0), (2, 1),
                   (2, 4), (3, 2), (3, 3),
                   (4, 0)
4,   7,       7:   (0, 0), (2, 3), (2, 4),
                   (3, 2), (3, 5), (6, 3),
                   (6, 4)
...
The solutions (x, y) of y^2 == x^3 - x (mod prime(n)) begin:
n, prime(n), a(n)\  solutions (x, y)
1,   2,       2:   (0, 0), (1, 0);
2,   3,       3:   (0, 0), (1, 0), (2, 0);
3,   5,       7:   (0, 0), (1, 0), (2, 1),
                   (2, 4), (3, 2), (3, 3),
                   (4, 0);
4,   7,       7:   (0, 0), (1, 0), (4, 2),
                   (4, 5), (5, 1), (5, 6),
                   (6, 0);
... - _Wolfdieter Lang_, Dec 22 2016
		

Crossrefs

Programs

  • Maple
    seq(nops([msolve(y^2-x^3-4*x, ithprime(n))]),n=1..100); # Robert Israel, Sep 28 2016
  • Ruby
    require 'prime'
    def A(a3, a2, a4, a6, n)
      ary = []
      Prime.take(n).each{|p|
        a = Array.new(p, 0)
        (0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1}
        ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]}
      }
      ary
    end
    def A276730(n)
      A(0, 0, 4, 0, n)
    end

Formula

a(n) is the number of solutions of the congruence y^2 == x^3 + 4*x (mod prime(n)), n >= 1.
a(n) is also the number
of solutions of the congruence y^2 == x^3 - x (mod prime(n)), n >= 1. - Wolfdieter Lang, Dec 22 2016 (See the Cremona link given in A278720).

A267858 Positions of entries of A002972 that are congruent to 1 modulo 4.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 10, 11, 12, 18, 19, 21, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, 38, 41, 43, 45, 47, 49, 50, 52, 53, 55, 56, 57, 59, 60, 63, 65, 66, 68, 69, 72, 73, 74, 77, 78, 85, 87, 88, 89, 90, 91, 93, 94, 95, 96, 100, 104, 105, 106, 108, 110, 112, 115, 119, 120, 122, 127, 128, 131
Offset: 1

Views

Author

Wolfdieter Lang, Feb 06 2016

Keywords

Comments

This sequence is needed for the number of solutions modulo primes congruent to 1 modulo 4 of the elliptic curve y^2 = x^3 + x See A095978.
If a positive integer m is not in this sequence then A002972(m) == 3 (mod 4).

Examples

			n=1: A002972(1) = 1 == 1 (mod 4). But because m = 2 is not in this sequence A002972(2) = 3 == 3 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    pmax = 2000; odd[p_] := Module[{k, m}, 2m+1 /. ToRules[Reduce[k>0 && m >= 0 && (2k)^2 + (2m+1)^2 == p, {k, m}, Integers]]]; Reap[For[n=1; p=5, p < pmax, p = NextPrime[p], If[Mod[p, 4]==1, If[Mod[odd[p], 4]==1, Sow[n]]; n++]]][[2, 1]] (* Jean-François Alcover, Feb 26 2016 *)

Formula

A002972(a(n)) == 1 (mod 4), n >= 1.
Showing 1-4 of 4 results.