cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A267859 The p-defect p - N(p) of the elliptic curve y^2 = x^3 + x for primes p congruent to 1 modulo 4 (A002144).

Original entry on oeis.org

2, -6, 2, 10, 2, 10, -14, 10, -6, 10, 18, 2, -6, -14, -22, -14, -22, 26, 18, -14, 2, -30, 26, -30, 2, 26, 18, 10, 34, 26, -22, 18, 10, 34, -14, 34, -38, 2, -6, -30, 34, -14, 42, -38, 10, -22, 42, -38, 26, 2, -46, 10, 34, -38, 50, 26, 50, -46, 2, 10, -30, -54, 18, -38, 50, 34, -22, 10, 50, -54
Offset: 1

Views

Author

Wolfdieter Lang, Feb 06 2016

Keywords

Comments

See A002172 for a differently signed sequence.
The number N(p) of solutions modulo a prime p of the elliptic curve y^2 = x^3 + x (of discriminant -4) is given for all p in A095978.
The p-defect a_p = p - N(p) for prime 2 and primes congruent to 3 modulo 4 vanishes.
A002144(n) - (a(n)/2)^2 = (2*A002973(n))^2, n >= 1. See the formula for A095978 for primes 1 (mod 4).
This sequence gives also the non-vanishing p-defects of the elliptic curve y^2 = x^3 - 4*x. See a comment on A138515 with the Martin and Ono link for the modularity series for these two elliptic curves. - Wolfdieter Lang, May 26 2016

Examples

			n = 2: p = A002144(2) = 13 = A000040(6), m = 6, a(2) = 13 - A095978(6) = 13 - 19  = -6.
n = 2:  -6 = A138515((A002144(2) - 1)/4) =
A138515(3) = -6. - _Wolfdieter Lang_, May 26 2016
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 398. In the 4th ed., 2014, p. 371.

Crossrefs

Programs

  • Mathematica
    terms = 100; A002144 = Select[Range[5, 20*terms, 4], PrimeQ]; A095978[n_] := Module[{p, xy, x}, p = Prime[n]; If[n==1 || Mod[p, 4]==3, Return[p]]; xy = {Re[#], Im[#]}& @ FactorInteger[p, GaussianIntegers -> True][[2, 1]]; x = SelectFirst[xy, OddQ]; If[Mod[x, 4]==1, p - 2*x, p + 2*x]]; a[n_] := (p = A002144[[n]]; m = PrimePi[p]; p - A095978[m]); Array[a, terms] (* Jean-François Alcover, Feb 26 2016, after Robert Israel (A095978) *)

Formula

a(n) = A002144(n) - A095978(m) with A002144(n) = A000040(m), n >= 1.
a(n) = A138515((A002144(n) - 1)/4), n >= 1. - Wolfdieter Lang, May 26 2016

A280339 Expansion of phi(x)^2 * chi(x^2)^4 * f(-x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, -1, -2, -5, -14, 4, 12, 5, 40, 0, -26, 11, -68, -15, 30, -18, 106, 3, -50, -10, -182, 29, 104, 10, 270, 11, -130, 37, -360, -51, 164, -16, 506, -30, -266, -65, -686, 62, 320, 53, 898, 22, -414, 50, -1206, -61, 612, -52, 1560, -4, -696, -81, -1958, 120
Offset: 0

Views

Author

Michael Somos, Dec 31 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 + 4*x^6 + 12*x^7 + 5*x^8 + ...
G.f. = q^-1 + 2*q^3 - q^7 - 2*q^11 - 5*q^15 - 14*q^19 + 4*q^23 + 12*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 QPochhammer[ x]^2 QPochhammer[ -x^2, x^4]^4, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^4 + A)^4 / (eta(x + A)^2 * eta(x^8 + A)^4), n))};

Formula

Expansion of phi(-x^4)^2 * chi(-x^4)^2 * f(x)^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/4) * eta(q^2)^6 * eta(q^4)^4 / (eta(q)^2 * eta(q^8)^4) in powers of q.
Euler transform of period 8 sequence [2, -4, 2, -8, 2, -4, 2, -4, ...].
a(n) = (-1)^n * A279955(n).
a(3*n + 1) / a(1) == A138515(n) (mod 3). a(3^3*n + 7) / a(7) == A138515(n) (mod 3^2).

A127826 Coefficients of L-series for elliptic curve "256a1": y^2 = x^3 + x^2 - 3*x + 1.

Original entry on oeis.org

1, -2, 0, 0, 1, -6, 0, 0, -6, -2, 0, 0, -5, 4, 0, 0, 12, 0, 0, 0, 6, 10, 0, 0, -7, 12, 0, 0, 4, -6, 0, 0, 0, 14, 0, 0, -2, 10, 0, 0, -11, -18, 0, 0, -18, 0, 0, 0, 10, -6, 0, 0, 0, -6, 0, 0, 18, 0, 0, 0, 25, -12, 0, 0, -20, -18, 0, 0, 6, -22, 0, 0, 0, 14, 0, 0, -6, 0, 0, 0, 0, -2, 0, 0, -13, -2, 0, 0, 12, -18, 0, 0, 0, 36
Offset: 0

Views

Author

Michael Somos, Jan 30 2007

Keywords

Examples

			q - 2*q^3 + q^9 - 6*q^11 - 6*q^17 - 2*q^19 - 5*q^25 + 4*q^27 + 12*q^33 + ...
		

Crossrefs

Convolution of A138515(q^4) and A112172.

Programs

  • Magma
    f := qEigenform(EllipticCurve(CremonaDatabase(), "256a1"), 188); [ Coefficient(f, n) : n in [ k : k in [0..188] | IsOdd(k) ] ] ; /* Klaus Brockhaus, Feb 01 2007 */
    
  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(-1/2)* eta[q^8]^8/(eta[q^4]*eta[q^16])^2*(eta[q^4]/eta[q^16] - 2*eta[q^16] /eta[q^4]), {q, 0, 150}], q]; Table[a[[n]], {n, 1, 100}] (* G. C. Greubel, Jul 25 2018 *)
  • PARI
    {a(n)=local(A, p, e, x, y); if(n<0, 0, n=2*n+1; A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, 0, if(p%8>4, if(e%2, 0, (-p)^(e/2)), for(i=1, sqrtint(p\2), if(issquare(p-2*i^2, &x), y=i; break)); a0=1; a1=y=2*x*(-1)^((x%8>4)+(y%4>0)); for(i=2,e, x=y*a1-p*a0; a0=a1; a1=x); a1))))) }
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^(n\4)); polcoeff( eta(x^2+A)^8/ eta(x+A)^2/ eta(x^4+A)^2* ((n%4==0)*eta(x+A)/eta(x^4+A) -(n%4==1)*2*eta(x^4+A)/eta(x+A)),n\4))}
    
  • PARI
    {a(n) = ellak( ellinit([0, 1, 0, -3, 1], 1), 2*n + 1)}

Formula

a(n)=b(2n+1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1+(-1)^e)/2*(-p^2)^(e/2) if p == 5,7 (mod 8), b(p^e) = b(p)*b(p^(e-1)) - p*b(p^(e-2)) if p == 1,3 (mod 8) and b(p) = 2*x*(-1)^((x mod 8 > 4) + (y mod 4) > 0) where p = x^2 + 2*y^2.
a(4n+2)=a(4n+3)=0.
Expansion of q^(-1/2) * eta(q^8)^8 / (eta(q^4) * eta(q^16))^2 * (eta(q^4) / eta(q^16) - 2 * eta(q^16) / eta(q^4)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = -64 (t/i)^2 f(t) where q = exp(2 Pi i t).
Showing 1-3 of 3 results.