cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095978 Number of solutions to y^2=x^3+x (mod p) as p runs through the primes.

Original entry on oeis.org

2, 3, 3, 7, 11, 19, 15, 19, 23, 19, 31, 35, 31, 43, 47, 67, 59, 51, 67, 71, 79, 79, 83, 79, 79, 99, 103, 107, 115, 127, 127, 131, 159, 139, 163, 151, 179, 163, 167, 147, 179, 163, 191, 207, 195, 199, 211, 223, 227, 259, 207, 239, 271, 251, 255, 263
Offset: 1

Views

Author

Lekraj Beedassy, Jul 16 2004

Keywords

Comments

The only rational solution of y^2 = x^3 + x is (y, x) = (0, 0). See the Silverman reference, Theorem 44.1 with a proof on pp. 388 - 390 (in the 4th edition, 2014, Theorem 1, pp. 354 - 356). - Wolfdieter Lang, Feb 08 2016
This is also the number of solutions to y^2 = x^3 - 4*x (mod p) as p runs through the primes. - Seiichi Manyama, Sep 16 2016

Examples

			n = 21: prime(21) = A000040(21) = 73 = A002144(9)  == 1 (mod 4), A002972(9) = 3 == 3 (mod 4) (not 1 (mod 4)), a(n) = 73 + 2*3 = 79.
n = 22: prime(22) = A000040(22) = 79 == 3 (mod 4), a(n) = prime(22) = 79.
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Theorem 45.1 on p. 399. In the 4th edition, 2014, Theorem 1 on p. 365.

Crossrefs

Programs

  • Maple
    a:= proc(n)
      local p, xy, x;
      p:= ithprime(n);
      if p mod 4 = 3 then return p fi;
      xy:= [Re,Im](GaussInt:-GIfactors(p)[2][1][1]);
      x:= op(select(type,xy,odd));
      if x mod 4 = 1 then p - 2*x else p + 2*x fi
    end proc:
    a(1):= 2:
    map(a, [$1..100]); # Robert Israel, Feb 09 2016
  • Mathematica
    a[n_] := Module[{p, xy, x}, p = Prime[n]; If[Mod[p, 4]==3, Return[p]]; xy = {Re[#], Im[#]}& @ FactorInteger[p, GaussianIntegers -> True][[2, 1]]; x = SelectFirst[xy, OddQ]; If[Mod[x, 4]==1, p - 2*x, p + 2*x]]; a[1] = 2; Array[a, 100] (* Jean-François Alcover, Feb 26 2016, after Robert Israel*)

Formula

a(1) = 2; if prime(n) == 3 (mod 4) then a(n) = prime(n); if prime(n) = A002144(m) then if A002972(m) == 1 (mod 4) then a(n) = prime(n) - 2*A002972(m), otherwise a(n) = prime(n) + 2*A002972(m).

Extensions

Edited. Update of reference, formula corrected, examples given, and a(21) - a(56) from Wolfdieter Lang, Feb 06 2016

A138515 Expansion of q^(-1/4) * eta(q^2)^8 / (eta(q) * eta(q^4))^2 in powers of q.

Original entry on oeis.org

1, 2, -3, -6, 2, 0, -1, 10, 0, 2, 10, -6, -7, -14, 0, 10, -12, 0, -6, 0, 9, 4, 10, 0, 18, 2, 0, -6, -14, 18, -11, -12, 0, 0, -22, 0, 20, -14, -6, -22, 0, 0, 23, 26, 0, 18, 4, 0, -14, 2, 0, 20, 0, 0, 0, -12, 3, -30, 26, 0, -30, -14, 0, 0, 2, -30, -28, 26, 0, 18, 10, 0, -13, 34, 0, 0, 20, 0, 26, -22, 0, 6, 0, -6, 18, 0
Offset: 0

Views

Author

Michael Somos, Mar 22 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 58 of the 74 eta-quotients listed in Table I of Martin (1996). - Michael Somos, Mar 16 2012
The weight 2 eta-quotient newform eta^8(8*z) / (eta^2(4*z)*eta^2(16*z)) appears in Theorem 2 of the Martin and Ono link in the row with conductor 64 for the strong Weil curve y^2 = x^3 - 4*x. For N(p), the number of solutions modulo primes for this elliptic curve and for y^2 = x^3 + x, see A095978. The non-vanishing p-defects p - N(p) for these two curves are given in A267859. - Wolfdieter Lang, May 26 2016

Examples

			G.f. = 1 + 2*x - 3*x^2 - 6*x^3 + 2*x^4 - x^6 + 10*x^7 + 2*x^9 + 10*x^10 - 6*x^11 + ...
G.f. for {b(n)} = q + 2*q^5 - 3*q^9 - 6*q^13 + 2*q^17 - q^25 + 10*q^29 + 2*q^37 + 10*q^41 - 6*q^45 - 7*q^49 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(64), 2), 342); A[1] + 2*A[3]; /* Michael Somos, May 15 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ -q])^2, {q, 0, n}]; (* Michael Somos, May 15 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^4 / (QPochhammer[ q] QPochhammer[ q^4]))^2, {q, 0, n}]; (* Michael Somos, May 15 2015 *)
  • PARI
    {a(n) = ellak( ellinit( [ 0, 0, 0, 1, 0], 1), 4*n + 1)};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^4 / (eta(x + A) * eta(x^4 + A)))^2, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p%4==1, forstep( x=1, sqrtint(p), 2, if( issquare( p - x^2), y=x; break)); y = 2 * y * (2 - (y%4)); a0 = 1; a1 = y; for(i=2, e, x = y * a1 - p * a0; a0 = a1; a1 = x); a1, if( e%2==0, (-p)^(e / 2)))))};
    

Formula

Coefficients of L-series for elliptic curve "64a4": y^2 = x^3 + x.
Expansion of f(q)^2 * f(-q^2)^2 = psi(-q)^2 * phi(q)^2 = chi(q)^2 * f(-q^2)^4 = psi(q)^2 * phi(-q^2)^2 = f(q)^4 / chi(q)^2 = f(q)^6 / phi(q)^2 = f(-q^2)^6 / psi(-q)^2 = phi(q)^4 / chi(q)^6 = chi(q)^6 * psi(-q)^4 = f(q)^3 * psi(-q) = f(-q^2)^3 * phi(q) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [2, -6, 2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 64 (t/i)^2 f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p == 1 (mod 4) with b(p) = 2 * x * (-1)^((x-1)/2) where p = x^2 + 4 * y^2.
G.f.: (Product_{k>0} (1 - x^(2*k))^2 * (1 + x^(2*k - 1)))^2.
a(n) = (-1)^n * A002171(n). a(9*n + 2) = -3 * a(n), a(9*n + 5) = a(9*n + 8) = 0. Convolution square of A138514.
G.f. for{b(n)}:
eta^8(8*z)/(eta^2(4*z)*eta^2(16*z)) with q = exp(2*Pi*i*z)), Im(z) > 0 (see a comment on the Martin-Ono link above). - Wolfdieter Lang, May 27 2016
Showing 1-2 of 2 results.