cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261893 a(n) = (n+1)^3 - n^2.

Original entry on oeis.org

1, 7, 23, 55, 109, 191, 307, 463, 665, 919, 1231, 1607, 2053, 2575, 3179, 3871, 4657, 5543, 6535, 7639, 8861, 10207, 11683, 13295, 15049, 16951, 19007, 21223, 23605, 26159, 28891, 31807, 34913, 38215, 41719, 45431, 49357, 53503, 57875, 62479, 67321, 72407
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 05 2015

Keywords

Crossrefs

Subsequence of A167222.

Programs

  • Haskell
    a261893 n = n * (n * (n + 2) + 3) + 1
    a261893_list = zipWith (-) (tail a000578_list) a000290_list
    
  • Magma
    [n^3+2*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jul 04 2016
  • Mathematica
    Table[n^3 + 2 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jul 04 2016 *)
    LinearRecurrence[{4,-6,4,-1},{1,7,23,55},50] (* Harvey P. Dale, Mar 01 2023 *)
  • Maxima
    makelist(n^3+2*n^2+3*n+1, n, 0, 50); /* Bruno Berselli, Jul 04 2016 */
    
  • PARI
    vector(50, n, n--; n^3+2*n^2+3*n+1) \\ Bruno Berselli, Jul 04 2016
    
  • Sage
    [n^3+2*n^2+3*n+1 for n in range(50)]; # Bruno Berselli, Jul 04 2016
    

Formula

a(n) = n^3 + 2*n^2 + 3*n + 1.
a(n) = A000578(n+1) - A000290(n).
O.g.f.: (1 + 3*x + x^2 + x^3)/(1 - x)^4. - Bruno Berselli, Jul 04 2016
E.g.f.: (1 + 6*x + 5*x^2 + x^3)*exp(x). - Bruno Berselli, Jul 04 2016