A262000 a(n) = n^2*(7*n - 5)/2.
0, 1, 18, 72, 184, 375, 666, 1078, 1632, 2349, 3250, 4356, 5688, 7267, 9114, 11250, 13696, 16473, 19602, 23104, 27000, 31311, 36058, 41262, 46944, 53125, 59826, 67068, 74872, 83259, 92250, 101866, 112128, 123057, 134674, 147000, 160056, 173863, 188442, 203814, 220000
Offset: 0
Examples
For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n^2*(7*n-5)/2: n in [0..40]];
-
Mathematica
Table[n^2 (7 n - 5)/2, {n, 0, 40}] LinearRecurrence[{4,-6,4,-1},{0,1,18,72},50] (* Harvey P. Dale, Oct 04 2016 *)
-
PARI
vector(40, n, n--; n^2*(7*n-5)/2)
-
Sage
[n^2*(7*n-5)/2 for n in (0..40)]
Formula
G.f.: x*(1 + 14*x + 6*x^2)/(1 - x)^4.
a(n) = Sum_{i=0..n-1} n*(7*i+1) for n>0, a(0)=0.
a(n+1) + a(-n) = A069125(n+1).
Sum_{i>0} 1/a(i) = 1.082675669875907610300284768825... = (42*(log(14) + 2*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14))) + 21*Pi*tan(3*Pi/14))/75 - Pi^2/15. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 16*x + 7*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Comments