cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262000 a(n) = n^2*(7*n - 5)/2.

Original entry on oeis.org

0, 1, 18, 72, 184, 375, 666, 1078, 1632, 2349, 3250, 4356, 5688, 7267, 9114, 11250, 13696, 16473, 19602, 23104, 27000, 31311, 36058, 41262, 46944, 53125, 59826, 67068, 74872, 83259, 92250, 101866, 112128, 123057, 134674, 147000, 160056, 173863, 188442, 203814, 220000
Offset: 0

Views

Author

Bruno Berselli, Sep 08 2015

Keywords

Comments

Also, structured enneagonal prism numbers.

Examples

			For n=8, a(8) = 8*(7*0+1)+8*(7*1+1)+8*(7*2+1)+8*(7*3+1)+8*(7*4+1)+8*(7*5+1)+8*(7*6+1)+8*(7*7+1) = 1632.
		

Crossrefs

Cf. similar sequences with the formula n^2*(k*n - k + 2)/2: A000290 (k=0), A002411 (k=1), A000578 (k=2), A050509 (k=3), A015237 (k=4), A006597 (k=5), A100176 (k=6), this sequence (k=7), A103532 (k=8).

Programs

  • Magma
    [n^2*(7*n-5)/2: n in [0..40]];
  • Mathematica
    Table[n^2 (7 n - 5)/2, {n, 0, 40}]
    LinearRecurrence[{4,-6,4,-1},{0,1,18,72},50] (* Harvey P. Dale, Oct 04 2016 *)
  • PARI
    vector(40, n, n--; n^2*(7*n-5)/2)
    
  • Sage
    [n^2*(7*n-5)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + 14*x + 6*x^2)/(1 - x)^4.
a(n) = Sum_{i=0..n-1} n*(7*i+1) for n>0, a(0)=0.
a(n+1) + a(-n) = A069125(n+1).
Sum_{i>0} 1/a(i) = 1.082675669875907610300284768825... = (42*(log(14) + 2*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14))) + 21*Pi*tan(3*Pi/14))/75 - Pi^2/15. - Vaclav Kotesovec, Oct 04 2016
From Elmo R. Oliveira, Aug 06 2025: (Start)
E.g.f.: exp(x)*x*(2 + 16*x + 7*x^2)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)