A262031 Numerator of partial sums of a reordered alternating harmonic series.
1, 4, 5, 31, 247, 389, 1307, 15637, 13327, 187111, 199123, 353201, 6364777, 127056883, 23083451, 24191987, 579694957, 535076383, 13912332463, 43224283189, 40355946289, 1210479158981, 38689398709811, 72866186391697, 75054119011297, 77117026909777, 73105817107177, 2777117009412349
Offset: 0
Examples
The first fractions s(n) (in lowest terms) are 1, 4/3, 5/6, 31/30, 247/210, 389/420, 1307/1260, 15637/13860, 13327/13860, 187111/180180, 199123/180180, 353201/360360, ... The values s(10^n), for n=0..6, are (Maple 10 digits) [1.333333333, 1.105133755, 1.047114258, 1.040469694, 1.039795760, 1.039728271, 1.039721521], to be compared with 3*log(2)/2 (approximately 1.039720771).
Links
- P. G. Lejeune Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Faktor sind, unendlich viele Primzahlen enthält, Abh. Preuss. Akad. Wiss. (1837) 45 -81; Werke I, 313-342.
- M. Ohm, De nonnullis seriebus infinitis summandis, Berolini, 1839, Typis Trowitzschii et filli.
- A. Pringsheim, Ueber die Werthveränderungen bedingt convergenter Reihen und Producte, Math. Ann. 22 (1838) 455-503.
Programs
-
Mathematica
Table[Numerator@ Sum[Which[Mod[k, 3] == 0, 3/(4 k + 3), Mod[k, 3] == 1, 3/(4 k + 5), True, -3/(2 (k + 1))], {k, 0, n} ], {n, 0, 27}] (* Michael De Vlieger, Jul 26 2016 *)
-
PARI
lista(nn) = {my(s = 0); for (k=0, nn, if (k%3==2, t = -3/(2*(k+1)), if (k%3==1, t = 3/(4*k+5), t = 3/(4*k+3))); s += t; print1(numerator(s), ", "););} \\ Michel Marcus, Sep 13 2015
Formula
a(n) = numerator(s(n)) with s(n) = Sum_{k=0..n} c(k), where c(k) = 3/(4*k+3), 3/(4*k+5), -3/(2*(k+1)) if k == 0, 1, 2 (mod 3), respectively.
Comments