A265316 First row of A262057.
0, 2, 7, 21, 23, 64, 69, 71, 193, 207, 209, 214, 579, 581, 622, 627, 629, 643, 1737, 1739, 1744, 1866, 1868, 1882, 1887, 1889, 1930, 5211, 5213, 5218, 5232, 5234, 5599, 5604, 5606, 5647, 5661, 5663, 5668, 5790, 5792, 15634, 15639, 15641, 15655, 15696, 15698
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..140
- Matvey Borodin, Hannah Han, Kaylee Ji, Tanya Khovanova, Alexander Peng, David Sun, Isabel Tu, Jason Yang, William Yang, Kevin Zhang, and Kevin Zhao, Variants of Base 3 over 2, arXiv:1901.09818 [math.NT], 2019.
- J. Gerver, J. Propp, and J. Simpson, Greedily partitioning the natural numbers into sets free of arithmetic progressions, Proc. of the Amer. Math. Soc. 102 (1988), no. 3, pp. 765-772.
- Tanya Khovanova and Kevin Wu, Base 3/2 and Greedily Partitioned Sequences, arXiv:2007.09705 [math.NT], 2020.
- K. F. Roth, On certain sets of integers, Journal of the London Mathematical Society s1-28 (1953), 104-109.
- Wikipedia, Szemerédi's theorem.
Programs
-
Maple
M:= 100: # to get a(1) to a(M) for i from 1 to M do B[i]:= {}: F[i]:= {}: od: for x from 0 do for i from 1 to M do if not member(x,F[i]) then F[i]:= F[i] union map(y -> 2*x-y, B[i]); B[i]:= B[i] union {x}; if not assigned(A[i]) then A[i]:= x fi; break fi od; if i = M+1 then break fi; od: seq(A[i],i=1..M); # Robert Israel, Feb 03 2016
Formula
A006997(a(n)) = n - 1. - Rémy Sigrist, Jan 06 2024
Comments