A262084 Numbers m that satisfy the equation phi(m + 6) = phi(m) + 6 where phi(m) = A000010(m) is Euler's totient function.
5, 7, 11, 13, 17, 21, 23, 31, 37, 40, 41, 47, 53, 56, 61, 67, 73, 83, 88, 97, 98, 101, 103, 107, 131, 136, 151, 152, 156, 157, 167, 173, 191, 193, 223, 227, 233, 237, 248, 251, 257, 263, 271, 277, 296, 307, 311, 328, 331, 347, 353, 367, 373, 376, 383, 433, 443
Offset: 1
Examples
5 is a term since phi(5+6) = 10 = 6 + 4 = phi(5) + 6.
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- Wikipedia, Euler's totient function
Programs
-
Magma
[n: n in [1..500] | EulerPhi(n+6) eq EulerPhi(n)+6]; // Vincenzo Librandi, Sep 11 2015
-
Mathematica
Select[Range@500, EulerPhi@(# + 6)== EulerPhi[#] + 6 &] (* Vincenzo Librandi, Sep 11 2015 *)
-
PARI
is(n)=eulerphi(n + 6) == eulerphi(n) + 6 \\ Anders Hellström, Sep 11 2015
-
Sage
[n for n in [1..1000] if euler_phi(n+6)==euler_phi(n)+6] # Tom Edgar, Sep 10 2015
Comments