A262962
Prime p such that 2^p + 35 is also prime.
Original entry on oeis.org
3, 5, 7, 11, 263, 509, 1087, 26263, 348437
Offset: 1
For p=3, 2^3 + 35 = 43, which is prime.
Cf. similar sequences of the type "Primes p such that 2^p + k" listed in
A262098.
-
[p: p in PrimesUpTo(700) | IsPrime(2^p+35)]; // Vincenzo Librandi, Oct 06 2015
-
Select[Prime[Range[100000]], PrimeQ[(2^# + 35)] &]
-
forprime(p=2, 10^30, if (isprime(2^p + 35), print1(p", "))); \\ Altug Alkan, Oct 05 2015
A262099
Primes p such that 2^p + 17 is also prime.
Original entry on oeis.org
13, 769, 4441, 184189
Offset: 1
13 is in sequence because 2^13 + 17 = 8209 is prime.
Cf. similar sequences listed in
A262098.
-
[p: p in PrimesUpTo(1000) | IsPrime(2^p+17)];
-
Select[Prime[Range[1000]], PrimeQ[2^# + 17] &]
-
for(n=1, 1e3, if(isprime((2^prime(n))+17), print1(prime(n)", "))) \\ Altug Alkan, Sep 18 2015
A262100
Primes p such that 2^p + 29 is also prime.
Original entry on oeis.org
3, 5, 7, 13, 17, 23, 37, 43, 73, 79, 89, 127, 239, 409, 2543, 10837, 24749, 29879, 181913
Offset: 1
3 is in sequence because 2^3 + 29 = 37 is prime.
5 is in sequence because 2^5 + 29 = 61 is prime.
Cf. similar sequences listed in
A262098.
-
[p: p in PrimesUpTo(1000) | IsPrime(2^p+29)];
-
Select[Prime[Range[1000]], PrimeQ[2^# + 29] &]
-
for(n=1, 1e3, if(isprime((2^prime(n))+29), print1(prime(n)", "))) \\ Altug Alkan, Sep 18 2015
-
use ntheory ":all"; use Math::GMP ":constant"; forprimes { say if is_prob_prime(2**$+29) } 1e4; # _Dana Jacobsen, Oct 03 2015
A262201
Prime p such that 2^p + 33 is also prime.
Original entry on oeis.org
2, 3, 11, 1499, 2039
Offset: 1
For p=3, 2^3 + 33 = 41, which is prime.
Cf. similar sequences of the type "Primes p such that 2^p + k" listed in
A262098.
-
[p: p in PrimesUpTo(1000) | IsPrime(2^p+33)]; // Vincenzo Librandi, Oct 05 2015
-
Select[Prime[Range[100000]], PrimeQ[(2^# + 33)] &]
-
forprime(p=2, 10000, if (isprime(2^p + 33), print1(p", "))); \\ Altug Alkan, Oct 05 2015
A262934
Prime p such that 2^p + 27 is also prime.
Original entry on oeis.org
2, 5, 13, 41, 89113
Offset: 1
Prime 5 is in sequence because 2^5 + 27 = 59, which is also prime.
Cf. similar sequences of the type "Primes p such that 2^p + k" listed in
A262098.
-
[p: p in PrimesUpTo(100) | IsPrime(2^p+27)]; // Vincenzo Librandi, Oct 05 2015
-
Select[Prime[Range[100000]], PrimeQ[(2^# + 27)] &]
-
forprime(p=2, 10^30, if (isprime(2^p + 3^3), print1(p", "))); \\ Altug Alkan, Oct 04 2015
Showing 1-5 of 5 results.
Comments