cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A262962 Prime p such that 2^p + 35 is also prime.

Original entry on oeis.org

3, 5, 7, 11, 263, 509, 1087, 26263, 348437
Offset: 1

Views

Author

Robert Price, Oct 05 2015

Keywords

Comments

A000040 INTERSECT A220077.

Examples

			For p=3, 2^3 + 35 = 43, which is prime.
		

Crossrefs

Cf. A220077.
Cf. similar sequences of the type "Primes p such that 2^p + k" listed in A262098.

Programs

  • Magma
    [p: p in PrimesUpTo(700) | IsPrime(2^p+35)]; // Vincenzo Librandi, Oct 06 2015
  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(2^# + 35)] &]
  • PARI
    forprime(p=2, 10^30, if (isprime(2^p + 35), print1(p", "))); \\ Altug Alkan, Oct 05 2015
    

A262099 Primes p such that 2^p + 17 is also prime.

Original entry on oeis.org

13, 769, 4441, 184189
Offset: 1

Views

Author

Vincenzo Librandi, Sep 18 2015

Keywords

Comments

a(5) > 5*10^5. - Robert Price, Sep 18 2015
A000040 INTERSECT A057200. - Robert Price, Sep 18 2015

Examples

			13 is in sequence because 2^13 + 17 = 8209 is prime.
		

Crossrefs

Subsequence of primes of A057200.
Cf. similar sequences listed in A262098.

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(2^p+17)];
    
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2^# + 17] &]
  • PARI
    for(n=1, 1e3, if(isprime((2^prime(n))+17), print1(prime(n)", "))) \\ Altug Alkan, Sep 18 2015

A262100 Primes p such that 2^p + 29 is also prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 23, 37, 43, 73, 79, 89, 127, 239, 409, 2543, 10837, 24749, 29879, 181913
Offset: 1

Views

Author

Vincenzo Librandi, Sep 18 2015

Keywords

Comments

a(20) > 419637. - Robert Price, Oct 04 2015

Examples

			3 is in sequence because 2^3 + 29 = 37 is prime.
5 is in sequence because 2^5 + 29 = 61 is prime.
		

Crossrefs

Subsequence of primes of A156982.
Cf. similar sequences listed in A262098.

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(2^p+29)];
    
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2^# + 29] &]
  • PARI
    for(n=1, 1e3, if(isprime((2^prime(n))+29), print1(prime(n)", "))) \\ Altug Alkan, Sep 18 2015
    
  • Perl
    use ntheory ":all"; use Math::GMP ":constant"; forprimes { say if is_prob_prime(2**$+29) } 1e4; # _Dana Jacobsen, Oct 03 2015

Extensions

a(17)-a(18) from Dana Jacobsen, Oct 03 2015
a(19) derived from A156982 by Robert Price, Oct 04 2015

A262201 Prime p such that 2^p + 33 is also prime.

Original entry on oeis.org

2, 3, 11, 1499, 2039
Offset: 1

Views

Author

Robert Price, Oct 04 2015

Keywords

Comments

a(6) > 203018.
A000040 INTERSECT A247953.

Examples

			For p=3, 2^3 + 33 = 41, which is prime.
		

Crossrefs

Cf. A157007.
Cf. similar sequences of the type "Primes p such that 2^p + k" listed in A262098.

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(2^p+33)]; // Vincenzo Librandi, Oct 05 2015
    
  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(2^# + 33)] &]
  • PARI
    forprime(p=2, 10000, if (isprime(2^p + 33), print1(p", "))); \\ Altug Alkan, Oct 05 2015

A262934 Prime p such that 2^p + 27 is also prime.

Original entry on oeis.org

2, 5, 13, 41, 89113
Offset: 1

Views

Author

Robert Price, Oct 04 2015

Keywords

Comments

a(6) > 376790.

Examples

			Prime 5 is in sequence because 2^5 + 27 = 59, which is also prime.
		

Crossrefs

Cf. A157007.
Cf. similar sequences of the type "Primes p such that 2^p + k" listed in A262098.

Programs

  • Magma
    [p: p in PrimesUpTo(100) | IsPrime(2^p+27)]; // Vincenzo Librandi, Oct 05 2015
  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(2^# + 27)] &]
  • PARI
    forprime(p=2, 10^30, if (isprime(2^p + 3^3), print1(p", "))); \\ Altug Alkan, Oct 04 2015
    

Formula

A000040 INTERSECT A157007.
Showing 1-5 of 5 results.