cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A026962 a(n) = Sum_{k=0..n-1} T(n,k) * T(n,k+1), with T given by A026626.

Original entry on oeis.org

1, 6, 24, 108, 406, 1572, 5961, 22788, 87209, 335010, 1290376, 4983162, 19286891, 74797176, 290586771, 1130716508, 4406049037, 17191077082, 67152699384, 262594530318, 1027851765350, 4026831276662, 15788979175102, 61954847930374, 243278117470476, 955907159445522
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[3*n/2], T[n-1,k-1] +T[n-1,k]]]; (* T = A026626 *)
    A262962[n_]:=Sum[T[n,k]*T[n,k+1], {k,0,n-1}];
    Table[A262962[n], {n,40}] (* G. C. Greubel, Jun 23 2024 *)
  • SageMath
    @CachedFunction
    def T(n, k): # T = A026626
        if (k==0 or k==n): return 1
        elif (k==1 or k==n-1): return int(3*n//2)
        else: return T(n-1, k-1) + T(n-1, k)
    def A262962(n): return sum( T(n,k)*T(n,k+1) for k in range(n))
    [A262962(n) for n in range(1,41)] # G. C. Greubel, Jun 23 2024

Extensions

More terms from Sean A. Irvine, Oct 20 2019

A262098 Primes p such that 2^p + 9 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 23, 37, 47, 263, 317, 3229, 3253
Offset: 1

Views

Author

Vincenzo Librandi, Sep 18 2015

Keywords

Comments

a(12) > 100000. - Dana Jacobsen, Oct 03 2015
a(12) > 382198 using A057196. - Michael S. Branicky, Oct 31 2024

Examples

			5 is in sequence because 2^5 + 9 = 41 is prime.
		

Crossrefs

Subsequence of primes of A057196.
Cf. primes p such that 2^p+k is a prime: A057736 (k=3), A175173 (k=5), this sequence (k=9), A155780 (k=11), A175234 (k=15), A262099 (k=17), A175235 (k=21), A175236 (k=23), A262934 (k=27), A262100 (k=29), A262201 (k=33), A262962 (k=35).

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(2^p+9)];
    
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[2^# + 9] &]
  • PARI
    for(n=1, 1e3, if(isprime((2^prime(n))+9), print1(prime(n)", "))) \\ Altug Alkan, Sep 18 2015
    
  • Perl
    use ntheory ":all"; use Math::GMP qw/:constant/; forprimes { say if is_prime(2**$+9) } 10000; # _Dana Jacobsen, Oct 03 2015
Showing 1-2 of 2 results.