cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A262929 Expansion of phi(-x^3) / psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 0, -2, -1, 0, 0, 2, 1, 0, 0, -2, 0, 0, 0, 4, 1, 0, 0, -6, -2, 0, 0, 8, 1, 0, 0, -12, -1, 0, 0, 16, 2, 0, 0, -22, -3, 0, 0, 30, 2, 0, 0, -38, -1, 0, 0, 50, 4, 0, 0, -66, -5, 0, 0, 84, 3, 0, 0, -106, -3, 0, 0, 136, 6, 0, 0, -172, -8, 0, 0, 214, 5, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x^3 - x^4 + 2*x^7 + x^8 - 2*x^11 + 4*x^15 + x^16 + ...
G.f. = q^-1 - 2*q^5 - q^7 + 2*q^13 + q^15 - 2*q^21 + 4*q^29 + q^31 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2 x^(1/2) EllipticTheta[ 4, 0, x^3] / EllipticTheta[ 2, 0, x^2], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A) / (eta(x^6 + A) * eta(x^8 + A)^2), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q^3)^2*eta(q^4)/(eta(q^6)*eta(q^8)^2)) \\ Altug Alkan, Jul 31 2018

Formula

Expansion of q^(1/2) * eta(q^3)^2 * eta(q^4) / (eta(q^6) * eta(q^8)^2) in powers of q.
Euler transform of period 24 sequence [0, 0, -2, -1, 0, -1, 0, 1, -2, 0, 0, -2, 0, 0, -2, 1, 0, -1, 0, -1, -2, 0, 0, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = (32/3)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261877.
a(4*n) = A143066(n). a(4*n + 1) = a(4*n + 2) = 0. a(4*n + 3) = -2 * A262160(n).
a(12*n) = A262150(n). a(12*n + 3) = -2*A262151(n). a(12*n + 4) = -A262152(n). a(12*n + 7) = 2*A262156(n). a(12*n + 8) = A262157(n). a(12*n + 11) = -2*A262158(n). - Michael Somos, Apr 03 2016
Convolution inverse is A261877. - Michael Somos, Oct 22 2017

A262987 Expansion of f(-x, -x^5) * f(x^3, x^5) / f(-x, -x^2)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 3, 6, 11, 19, 33, 53, 86, 134, 205, 309, 460, 672, 974, 1394, 1975, 2773, 3863, 5333, 7316, 9964, 13484, 18140, 24269, 32288, 42751, 56331, 73888, 96503, 125529, 162635, 209939, 270027, 346123, 442213, 563205, 715110, 905361, 1142998, 1439098, 1807175
Offset: 0

Views

Author

Michael Somos, Oct 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 19*x^5 + 33*x^6 + 53*x^7 + ...
G.f. = q^5 + q^21 + 3*q^37 + 6*q^53 + 11*q^69 + 19*q^85 + 33*q^101 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, 2 n}];
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; a:= CoefficientList[Series[f[-x, -x^5]*f[x^3, x^5]/f[-x, -x^2]^2, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 31 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};

Formula

Expansion of (psi(x^6) / psi(x) + psi(x^6) / psi(-x)) / 2 in powers of x^2 where psi() is a Ramanujan theta function.
Euler transform of period 48 sequence [1, 2, 3, 2, 2, 0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 3, 1, 1, 0, 1, 1, 3, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 0, 2, 2, 3, 2, 1, 0, ...].
a(n) = A132217(2*n) = A262160(2*n).
Convolution product of A035294 and A097451.
a(n) ~ exp(sqrt(n)*Pi)/(8*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Oct 06 2015

A262146 Expansion of f(-x, -x^5) * f(x, x^7) / f(-x, -x^2)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 4, 8, 15, 25, 42, 68, 107, 166, 253, 377, 557, 811, 1166, 1661, 2344, 3275, 4543, 6253, 8544, 11600, 15653, 20994, 28011, 37178, 49100, 64550, 84489, 110115, 142951, 184867, 238196, 305844, 391391, 499244, 634865, 804925, 1017610, 1282957, 1613195
Offset: 0

Views

Author

Michael Somos, Oct 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 25*x^5 + 42*x^6 + 68*x^7 + ...
G.f. = q^13 + 2*q^29 + 4*q^45 + 8*q^61 + 15*q^77 + 25*q^93 + 42*q^109 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ - x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, 2 n + 1}];
  • PARI
    {a(n) = my(A); if( n<0, 0, n = 2*n + 1; A = x * O(x^n); polcoeff( - eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};

Formula

Expansion of - (psi(x^6) / psi(x) - psi(x^6) / psi(-x)) / (2 * x) in powers of x^2 where psi() is a Ramanujan theta function.
Euler transform of period 48 sequence [ 2, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 1, 1, 1, 3, 1, 2, 0, 1, 2, 2, 2, 2, 0, 2, 2, 2, 2, 1, 0, 2, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 2, 0, ...].
a(n) = A132217(2*n + 1) = - A262160(2*n + 1).
Convolution product of A097451 and A078408.
a(n) ~ exp(Pi*sqrt(n)) / (2^(7/2) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Mar 31 2018

A262938 Expansion of phi(-q) / phi(-q^6) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 2, -4, 0, -2, 4, 0, 4, -8, 0, -4, 10, 0, 8, -16, 0, -8, 20, 0, 14, -30, 0, -16, 36, 0, 24, -52, 0, -28, 64, 0, 42, -88, 0, -48, 108, 0, 68, -144, 0, -80, 176, 0, 108, -230, 0, -128, 280, 0, 170, -360, 0, -200, 436, 0, 260, -552, 0, -308, 666
Offset: 0

Views

Author

Michael Somos, Oct 04 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 2*q^4 + 2*q^6 - 4*q^7 - 2*q^9 + 4*q^10 + 4*q^12 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] / EllipticTheta[ 4, 0, q^6], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^12 + A) / (eta(x^2 + A) * eta(x^6 + A)^2), n))};

Formula

Expansion of eta(q)^2 * eta(q^12) / (eta(q^2) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ -2, -1, -2, -1, -2, 1, -2, -1, -2, -1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 6^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A262160.
a(n) = (-1)^n * A143068(n). a(2*n) = A260256(n). a(2*n + 1) = -2 * A261877(n).
a(3*n) = 0.
Showing 1-4 of 4 results.