A262183 a(0) = 0, a(n) = 10*a(n-1) + n*(n+1)*(n+2)/6.
0, 1, 14, 150, 1520, 15235, 152406, 1524144, 15241560, 152415765, 1524157870, 15241578986, 152415790224, 1524157902695, 15241579027510, 152415790275780, 1524157902758616, 15241579027587129, 152415790275872430, 1524157902758725630, 15241579027587257840
Offset: 0
Examples
(1) The decimal expansion of a(61)^(1/4) (with the blocks of 'random' digits enclosed in parentheses to aid readability) begins 1.111...111(026286308)333...333(2361974965884332291)666...666(4936365745813146737399105902)777...777(414516002742700195101894168058610026041)666...666(5834699239217156417791785081497321498627522786458)333..333(1... * 10^15. The repeating digits are 1, 3, 6, 7, 6 and 3, an initial subsequence of A060011. (2) The decimal expansion of 1/a(61)^(1/4) (with now the strings of 0's enclosed in parentheses) begins 9.(000..000)6870809025(000...000)131133379605615140625(000...000)300330802691003816294298046875(000...000)74515840736091563874877683318366943359375(000...000)193416219724333545001418899430083738351541748046875(000...000)5... * 10^(-16) The long strings of 0's gradually shorten in length until they disappear and are interlaced with 5 strings of digits [6870809025, 131133379605615140625, 300330802691003816294298046875, 74515840736091563874877683318366943359375, 193416219724333545001418899430083738351541748046875]. Reading these strings as ordinary integers and factorizing we obtain [ (3^2)*(5^2)*30536929, (3^2)*(5^6)*(30536929)^2, (3^3)*(5^8)*(30536929)^3, (3^3)*(5^12)*13*(30536929)^4, (3^3)*(5^13)*13*17*(30536929)^3 ] showing how the numbers are related. (3) The decimal expansion of 1/a(61)^(2/4) begins 8.1(000...000)12367456245(000...000)28324809994812870375(000...000)7207939264584091591063153125(000...000)192594788364052042015068473807471484375(000...000)52931280402387750233872466233174047490955859375(000...000)1... * 10^(-31). The long strings of 0's gradually shorten in length and are interlaced with 5 strings of digits [12367456245, 28324809994812870375, 7207939264584091591063153125, 192594788364052042015068473807471484375, 52931280402387750233872466233174047490955859375]. Reading these strings as ordinary integers and factorizing we obtain [ (3^4)*5*30536929, (3^5)*(5^3)*(30536929)^2, (3^4)*(5^5)*(30536929)^3, (3^4)*(5^8)*7*(30536929)^4, (3^6)*(5^8)*7*(30536929)^3 ]. (4) The decimal expansion of 1/a(61)^(3/4) begins 7.29(000...000)1669606593075(000...000)44611575741830270840625(000...000)124877547758919386815169127890625(000...000)35750407590077160299047085450511894287109375(000...000)1... * 10^(-46). The long strings of 0's gradually shorten in length and are interlaced with 4 strings of digits [1669606593075, 44611575741830270840625, 124877547758919386815169127890625, 35750407590077160299047085450511894287109375]. Reading these strings as ordinary integers and factorizing we obtain [ (3^7)*(5^2)*30536929, (3^7)*(5^5)*7*(30536929)^2, (3^6)*(5^7)*7*11*(30536929)^3, (3^7)*(5^12)*7*11*(30536929)^4 ]. (5) The decimal expansion of 1/a(61) begins 6.561(000...000)200352791169(000...000)6118158958879580001(000...000)186829785738019654040356929(000...000)5705207902167118776034942675531041(000...000)174219528638716252198345946001761436313089(000...000)5320129376453944844526984070493622855630820563681(000...000)1... * 10^(-61). The long strings of 0's gradually shorten in length and are interlaced with 6 strings of digits [200352791169, 6118158958879580001, 186829785738019654040356929, 5705207902167118776034942675531041, 174219528638716252198345946001761436313089, 5320129376453944844526984070493622855630820563681]. Reading these strings as ordinary integers and factorizing we obtain [ (3^8)*30536929, (3^8)*(30536929)^2, (3^8)*(30536929)^3, (3^8)*(30536929)^4, (3^8)*(30536929)^5, (3^8)*(30536929)^6 ].
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- K. S. Brown, Mock-rational numbers.
- Wikipedia, Schizophrenic Number
- Index entries for linear recurrences with constant coefficients, signature (14,-46,64,-41,10).
Programs
-
Magma
[0] cat [n eq 1 select 1 else 10*Self(n-1) + n*(n+1)*(n+2)/6: n in [1..30]]; // Vincenzo Librandi, Sep 20 2015
-
Maple
#A262183 seq((1/13122)*(2*10^(n+3)-243*n^3-1539*n^2-3096*n-2000), n = 0..22);
-
Mathematica
Table[(1/9^4) 10^(n + 3) - (243 n^3 + 1539 n^2 + 3096 n + 2000)/13122, {n, 0, 30}] (* Vincenzo Librandi, Sep 20 2015 *) nxt[{n_,a_}]:={n+1,10a+((n+1)(n+2)(n+3))/6}; NestList[nxt,{0,0},20][[All,2]] (* or *) LinearRecurrence[ {14,-46,64,-41,10},{0,1,14,150,1520},30] (* Harvey P. Dale, Feb 29 2020 *)
-
PARI
concat(0, Vec(-x/((x-1)^4*(10*x-1)) + O(x^40))) \\ Colin Barker, Sep 20 2015
Formula
a(n) = (1/9^4)*10^(n+3) - (243*n^3 + 1539*n^2 + 3096*n + 2000)/13122.
O.g.f. x/((1 - 10*x)*(1 - x)^4).
a(n) = 14*a(n-1)-46*a(n-2)+64*a(n-3)-41*a(n-4)+10*a(n-5) for n>4. - Colin Barker, Sep 20 2015
Comments