cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262397 a(n) = floor(A261327(n)/9).

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 1, 5, 1, 9, 2, 13, 4, 19, 5, 25, 7, 32, 9, 40, 11, 49, 13, 59, 16, 69, 18, 81, 21, 93, 25, 107, 28, 121, 32, 136, 36, 152, 40, 169, 44, 187, 49, 205, 53, 225, 58, 245, 64, 267, 69, 289, 75, 312, 81, 336, 87, 361, 93, 387, 100, 413, 106, 441
Offset: 0

Views

Author

Paul Curtz, Sep 21 2015

Keywords

Comments

Hexasections:
0, 1, 4, 9, 16, 25, 36, ... = A000290(n)
0, 5, 19, 40, 69, 107, 152, ... = c(n)
0, 1, 5, 11, 18, 28, 40, ... = d(n+1)
1, 9, 25, 49, 81, 121, 169, ... = A016754(n)
0, 2, 7, 13, 21, 32, 44, ... = A240438(n+1)
3, 13, 32, 59, 93, 136, 187, ... = e(n+1).
The six sequences have the signature (2, -1, 1, -2, 1), that is, the signature of a(n) without the 0's.
It appears that d(n+1) and A240438(n+1) are connected via the following scheme.
Let x(n) be the sequence that concatenates terms of d(n+1) in reverse order with terms of A240438(n+1), both without their index_0 term:
..., 18, 11, 5, 1, 0, 0, 2, 7, 13, 21, 32, ...
And consider the first and second differences of this sequence:
..., -7, -6, -4, -1, 0, 2, 5, 6, 8, 11, 12, ...
..., 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, ...
In the first differences, we get A047234(n+1) and A047267(n+1). And in the second differences, we get A010882(n).
In the same way, c(n) and e(n+1) are connected via the first and second differences of this sequence, with both their index_0 term:
..., 69, 40, 19, 5, 0, 3, 13, 32, 59, ...
that are respectively:
..., -29, -21, -14, -5, 3, 10, 19, 27, 34, ...
..., 8, 7, 9, 8, 7, 9, 8, 7, 9, ... .
Is it possible to find a direct definition for a(n)?

Examples

			a(0) = floor(1/9) = 0, a(1)= floor (5/9) = 0, a(2) = floor(2/9) = 0, a(3)= floor (13/9) = 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 70]/9 // Floor (* Jean-François Alcover, Sep 26 2015, after Vincenzo Librandi in A261327 *)
  • PARI
    a(n) = numerator((n^2+4)/4)\9; \\ Michel Marcus, Sep 22 2015
    
  • PARI
    concat([0,0,0], Vec(-x^3*(x^4 +x^3 +x^2 +x +1)*(x^12 -x^11 +x^10 -x^8 +2*x^6 -x^4 +x^2 -x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)*(x^2 +x +1)*(x^6 -x^3 +1)*(x^6 +x^3 +1)) + O(x^100))) \\ Colin Barker, Sep 25 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1)\9 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = (A261327(n) - A261327(n) mod 9)/9.
From Colin Barker, Sep 25 2015: (Start)
a(n) = floor((n^2+4)/36) for n even.
a(n) = floor((n^2+4)/9) for n odd.
G.f.: -x^3*(x^4 +x^3 +x^2 +x +1)*(x^12 -x^11 +x^10 -x^8 +2*x^6 -x^4 +x^2 -x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)*(x^2 +x +1)*(x^6 -x^3 +1)*(x^6 +x^3 +1)). (End)

Extensions

New name suggested by Michel Marcus, Sep 22 2015