A262407 a(n) = Sum_{k=0..n-1} C(n,k+1)*C(n,k)*C(n-1,k).
0, 1, 4, 24, 152, 1010, 6912, 48328, 343408, 2471274, 17966360, 131717960, 972488640, 7223061040, 53925450880, 404400203280, 3044645475296, 23002424245754, 174324246314184, 1324800580881952, 10093304926771600, 77073430602848316, 589761299099196224
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, ((21*n^3-49*n^2+30*n-8)*a(n-1)+ (8*(n-1))*(n-2)*(3*n-1)*a(n-2))/ ((3*n-4)*(n+1)*(n-1))) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2015
-
Mathematica
f[n_]:=HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1]; a[n_]:=n^2 (f[n] + 4 f[n - 1])/(3 n^2 + 3 n); Array[a, 25] (* Vincenzo Librandi, Sep 22 2015 *) Table[Sum[Binomial[n,k+1]Binomial[n,k]Binomial[n-1,k],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Apr 09 2021 *)
-
PARI
a(n)=sum(k=0, n-1, binomial(n, k+1)*binomial(n, k)*binomial(n-1, k))