cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262427 Decimal expansion of the complete elliptic integral of the first kind at sqrt(2*sqrt(2) - 2).

Original entry on oeis.org

2, 3, 2, 7, 1, 8, 5, 1, 4, 2, 4, 3, 6, 5, 3, 8, 7, 5, 0, 6, 0, 5, 0, 3, 6, 2, 8, 5, 6, 1, 8, 3, 5, 7, 0, 7, 7, 5, 1, 5, 1, 8, 1, 7, 5, 8, 2, 3, 2, 5, 4, 1, 1, 7, 4, 7, 9, 3, 2, 0, 8, 1, 9, 9, 4, 4, 6, 1, 1, 8, 8, 2, 5, 7, 3, 1, 3, 6, 0, 4, 9, 5, 7, 8, 2, 2, 5, 9, 0, 0, 7, 0, 1, 1, 0, 6, 6, 1, 0, 5, 6, 2, 3, 7, 1
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2015

Keywords

Examples

			2.3271851424365387506050362856183570775151817582325411747932...
		

Crossrefs

Cf. A130786.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)^(3/2)*Sqrt(4 + 2*Sqrt(2))/(4*Gamma(5/8)*Gamma(7/8)); // G. C. Greubel, Oct 07 2018
  • Maple
    evalf(sqrt(2)*EllipticK(sqrt(2)-1), 120); # Vaclav Kotesovec, Sep 22 2015
    evalf(int(2/sqrt(1-x^8), x=0..1), 120); # Christian N. Hofmann, Jun 28 2023
  • Mathematica
    K[x_] := EllipticK[x^2/(x^2 - 1)]/Sqrt[1 - x^2]; RealDigits[ K[Sqrt[2 Sqrt[2] - 2]], 10, 105][[1]]
  • PARI
    ellk(k)=intnum(t=0,1,1/sqrt((1-t^2)*(1-(k*t)^2)))
    sqrt(2)*ellk(sqrt(2)-1) \\ Charles R Greathouse IV, Apr 18 2016
    

Formula

Equals Pi^(3/2)*sqrt(4 + 2*sqrt(2))/(4*Gamma(5/8)*Gamma(7/8)).
Also equals sqrt(2)*K(sqrt(2) - 1).
Also equals 2*Integral_{x=0..1} 1/sqrt(1-x^8) dx. - Christian N. Hofmann, Jun 24 2023
Also equals Pi^(3/2)*cos(Pi/4)*cos(Pi/8)/(Gamma(5/8)*Gamma(7/8)). - Christian N. Hofmann, Aug 20 2023
Equals Gamma(1/8)^2 / (2^(11/4) * Gamma(1/4)). - Vaclav Kotesovec, Apr 15 2024