A262997 a(n+3) = a(n) + 24*n + 40, a(0)=0, a(1)=5, a(2)=19.
0, 5, 19, 40, 69, 107, 152, 205, 267, 336, 413, 499, 592, 693, 803, 920, 1045, 1179, 1320, 1469, 1627, 1792, 1965, 2147, 2336, 2533, 2739, 2952, 3173, 3403, 3640, 3885, 4139, 4400, 4669, 4947, 5232, 5525, 5827, 6136, 6453, 6779, 7112, 7453, 7803, 8160, 8525
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Programs
-
Mathematica
a[0] = 0; a[1] = 5; a[2] = 19; a[n_] := a[n] = a[n - 3] + 24 (n - 3) + 40; Table[a@ n, {n, 0, 46}] (* Michael De Vlieger, Oct 09 2015 *) LinearRecurrence[{2,-1,1,-2,1},{0,5,19,40,69},60] (* Harvey P. Dale, Dec 16 2024 *)
-
PARI
vector(100, n, n--; 4*n^2 + (4*(n+1)-3)\3) \\ Altug Alkan, Oct 07 2015
-
PARI
concat(0, Vec(-x*(x+1)*(3*x^2+4*x+5)/((x-1)^3*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 08 2015
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) - a(n-5), n> 4.
a(-n) = e(n).
a(-n) + a(n) = 8*n^2.
a(n+2) - 2*a(n+1) + a(n) = period 3:repeat 9, 7, 8.
a(n+3) - a(n-3) = 8*(1 + 6*n).
a(n+7) - a(n-7) = 40*(2 + 3*n).
a(2n+1) = -a(2n) + 6*n + 3.
a(2n+2) = -a(2n+1) + 4*(n+1).
a(3n) = 4*n*(9*n+1) = 8*A022267(n), a(3n+1) = 36*n^2 +28*n +5, a(3n+2) = 36*n^2 +52*n +19.
G.f.: -x*(x+1)*(3*x^2+4*x+5) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Oct 08 2015
Comments