cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262600 Number of Dyck paths of semilength n and height exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 7, 33, 132, 484, 1684, 5661, 18579, 59917, 190696, 600744, 1877256, 5828185, 17998783, 55342617, 169552428, 517884748, 1577812060, 4796682165, 14555626635, 44100374341, 133436026192, 403279293648, 1217616622992, 3673214880049, 11072960931319
Offset: 0

Views

Author

Ran Pan, Sep 25 2015

Keywords

Examples

			a(4) = 1 because the only favorable path is UUUUDDDD.
		

Crossrefs

Column k=4 of A080936.

Programs

  • Magma
    [((3^(n-1)+1)/2)-Fibonacci(2*n-1): n in [1.. 35]]; // Vincenzo Librandi, Sep 26 2015
    
  • Mathematica
    CoefficientList[ Series[x^4/((x-1) (3 x-1) (x^2-3 x+1)), {x, 0, 30}], x]
  • PARI
    a(n) = if( n<1, n==0, (3^(n-1) + 1) / 2) - fibonacci(2*n-1); vector(30, n, a(n-1)) \\ Altug Alkan, Sep 25 2015
    
  • PARI
    concat(vector(4), Vec(x^4/((1-x)*(1-3*x)*(1-3*x+x^2)) + O(x^100))) \\ Colin Barker, Feb 08 2016

Formula

a(n) = A124302(n) - A001519(n).
G.f.: x^4/((x-1)*(3*x-1)*(x^2-3*x+1)).
a(n) = A080936(n,4).
From Colin Barker, Feb 08 2016: (Start)
a(n) = 7*a(n-1)-16*a(n-2)+13*a(n-3)-3*a(n-4) for n>4.
a(n) = 2^(-1-n)*(5*2^n*(3+3^n)+3*(-5+sqrt(5))*(3+sqrt(5))^n-3*(3-sqrt(5))^n*(5+sqrt(5)))/15 for n>0. (End)
E.g.f.: (2 + 3*exp(x) + exp(3*x))/6 - exp(3*x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, May 21 2024