A262708 a(n) = p-(p/5) where p = prime(n) and (p/5) is a Legendre symbol.
8, 10, 14, 18, 18, 24, 28, 30, 38, 40, 44, 48, 54, 58, 60, 68, 70, 74, 78, 84, 88, 98, 100, 104, 108, 108, 114, 128, 130, 138, 138, 148, 150, 158, 164, 168, 174, 178, 180, 190, 194, 198, 198, 210, 224, 228, 228, 234, 238, 240, 250, 258, 264, 268, 270, 278, 280
Offset: 4
Keywords
Examples
For n=4, prime(4)=7, and a(4)=8.
References
- Paulo Ribenboim, My Numbers, My Friends, Springer-Verlag, 2000.
- Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover. (See p. 73.)
Links
- U. Alfred, On the form of primitive factors of Fibonacci numbers, Volume 1, Fibonacci Quarterly, vol 1 (1963), page 1.
- Andreas-Stephan Elsenhans, The Fibonacci sequence modulo p^2., pages 1-6.
- Shane Findley, Discussion of Sequence A262708.
- Richard J. McIntosh and Eric L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Mathematics of Computation, vol 76 (260), Oct 2007.
- John Vinson, The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence, Fibonacci Quarterly, vol 1 (1963), pages 37-45.
Programs
-
Mathematica
Table[Prime@ n - JacobiSymbol[Prime@ n, 5], {n, 4, 60}] (* Michael De Vlieger, Oct 04 2015 *)
-
PARI
lista(nn)=forprime(p=3, nn, print1(p-kronecker(p, 5), ", ");); \\ Michel Marcus, Sep 29 2015
Extensions
Edited by N. J. A. Sloane, Sep 29 2015
Edited by Jon E. Schoenfield, Oct 09 2015
Comments