cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Shane Findley

Shane Findley's wiki page.

Shane Findley has authored 11 sequences. Here are the ten most recent ones:

A262708 a(n) = p-(p/5) where p = prime(n) and (p/5) is a Legendre symbol.

Original entry on oeis.org

8, 10, 14, 18, 18, 24, 28, 30, 38, 40, 44, 48, 54, 58, 60, 68, 70, 74, 78, 84, 88, 98, 100, 104, 108, 108, 114, 128, 130, 138, 138, 148, 150, 158, 164, 168, 174, 178, 180, 190, 194, 198, 198, 210, 224, 228, 228, 234, 238, 240, 250, 258, 264, 268, 270, 278, 280
Offset: 4

Author

Shane Findley, Sep 27 2015

Keywords

Comments

The sequence lists Fibonacci indices q that are conjectured to produce Fibonacci numbers divisible by p^2, where p is a Fibonacci-Wieferich prime.

Examples

			For n=4, prime(4)=7, and a(4)=8.
		

References

  • Paulo Ribenboim, My Numbers, My Friends, Springer-Verlag, 2000.
  • Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover. (See p. 73.)

Crossrefs

Programs

  • Mathematica
    Table[Prime@ n - JacobiSymbol[Prime@ n, 5], {n, 4, 60}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    lista(nn)=forprime(p=3, nn, print1(p-kronecker(p, 5), ", ");); \\ Michel Marcus, Sep 29 2015

Extensions

Edited by N. J. A. Sloane, Sep 29 2015
Edited by Jon E. Schoenfield, Oct 09 2015

A172074 Continued fraction expansion of sqrt(12500)+50 = 100*phi, where phi=(sqrt(5)+1)/2 is the golden ratio.

Original entry on oeis.org

161, 1, 4, 11, 1, 1, 3, 6, 1, 13, 8, 1, 6, 1, 4, 1, 1, 2, 1, 1, 1, 1, 13, 2, 1, 3, 8, 1, 2, 19, 1, 54, 1, 19, 2, 1, 8, 3, 1, 2, 13, 1, 1, 1, 1, 2, 1, 1, 4, 1, 6, 1, 8, 13, 1, 6, 3, 1, 1, 11, 4, 1, 222
Offset: 0

Author

Shane Findley, Jan 25 2010

Keywords

Comments

The 62 trailing terms are repeated infinitely.
This is just one of an infinite set of continued fractions, related to the golden ratio, and more specifically to the square root of 125, 12500, 1250000...
Taking phi*10^k, one can look at sqrt(125) + 5, sqrt(12500) + 50 (this sequence), sqrt(1250000) + 500, etc.
This is not an efficient way to calculate phi. - Franklin T. Adams-Watters, Sep 10 2011
Periodic with a period of length 62, starting right after the initial term. Moreover, the sequence is symmetric when any 54 or 222 is taken as central value (cf. formula). - M. F. Hasler, Sep 09 2011

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[N[Sqrt[12500], 50000], 63]
    ContinuedFraction[100*GoldenRatio,100] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    default(realprecision, 199); contfrac((sqrt(5)+1)/.02)  \\ M. F. Hasler, Sep 09 2011
    
  • PARI
    a(n)=[222-61*!n, 1, 4, 11, 1, 1, 3, 6, 1, 13, 8, 1, 6, 1, 4, 1, 1, 2, 1, 1, 1, 1, 13, 2, 1, 3, 8, 1, 2, 19, 1, 54][32-abs(n%62-31)]  \\ M. F. Hasler, Sep 09 2011

Formula

a(31*k - n) = a(31*k + n), for all n < 31k, k > 0. - M. F. Hasler, Sep 09 2011

Extensions

Clarified the definition, following an observation by Franklin T. Adams-Watters. M. F. Hasler, Sep 09 2011

A135500 Generating function for Viswanath's constant, using the golden string.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
Offset: 0

Author

Shane Findley, Feb 19 2008

Keywords

Comments

For each bit of the golden string that is a 1, write seven consecutive bits and for each 0 of the golden string write eight consecutive bits.
Alternate between 0 and 1. Exclude the first seven bits since we are based at zero, just like the golden string. Heads = 1, Tails = 0.

Examples

			Bit 1 of the golden string is a 1, so bits 8-14(seven consecutive) are the same. Bit 2 of the golden string is 0, so bits 15-22(eight consecutive) are the same. Odd bits of the golden string mean to write 1 and even bits of the golden string mean to write 0.
		

Crossrefs

Formula

Each power of Viswanath's constant (1.131988248...) And V^3 has a corresponding coin flip. Simply take the absolute values of the two possible(+Heads or -Tails) outcomes and choose the flip closest to the value of the power.

A115064 Continued fraction expansion of Viswanath's constant A078416.

Original entry on oeis.org

1, 7, 1, 1, 2, 1, 3, 2, 1, 2, 1, 8, 1, 5
Offset: 0

Author

Shane Findley, Mar 01 2006

Keywords

Crossrefs

Cf. A078416 (decimal expansion).

Extensions

Values from a(12) on replaced consistent with A078416; invalid comments removed - R. J. Mathar, Sep 09 2009
Offset changed by Andrew Howroyd, Aug 03 2024

A084924 Let t(x) be the highest power of 2 which divides x+1. Then a(1)=3; a(n) is the least prime p for which t(p) > t(a(n-1)).

Original entry on oeis.org

3, 7, 31, 127, 1279, 3583, 5119, 6143, 8191, 81919, 131071, 524287, 14680063, 109051903, 654311423, 738197503, 2147483647, 21474836479, 51539607551, 824633720831, 13743895347199, 26388279066623, 246290604621823
Offset: 1

Author

Shane Findley, Jul 15 2003

Keywords

Examples

			a(5)=1279 because t(a(4))=7 and 1279 is the least prime with t(p)>7.
		

Programs

  • PARI
    a=vector(50); a[1]=3;for(i=2,length(a), j=k=2^(factor(a[i-1]+1,2)[1,2]+1); while(! isprime(j-1),j+=k);a[i]=j-1); a \\ M. F. Hasler, Mar 15 2007

Extensions

Edited by Don Reble, May 08 2004
More terms from M. F. Hasler, Mar 15 2007

A074281 Primes of the form Lucas(2*n)/3.

Original entry on oeis.org

41, 281, 90481, 29134601, 3020733700601, 313195711516578281, 5280544535667472291277149119296546201, 547497418496144666543167613835090178297001
Offset: 1

Author

Shane Findley, Sep 21 2002

Keywords

Comments

The next term has 96 digits. - Harvey P. Dale, Apr 29 2011.

Examples

			Lucas(2*5)=3*41, Lucas(2*7)=3*281, Lucas(2*13)=3*90481.
		

Crossrefs

Values of n are given in A074304.

Programs

  • Mathematica
    Select[Table[LucasL[2n]/3,{n,400}],PrimeQ]  (* Harvey P. Dale, Apr 29 2011 *)

A064535 a(n) = (2^prime(n)-2)/prime(n); a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 6, 18, 186, 630, 7710, 27594, 364722, 18512790, 69273666, 3714566310, 53634713550, 204560302842, 2994414645858, 169947155749830, 9770521225481754, 37800705069076950, 2202596307308603178, 33256101992039755026, 129379903640264252430
Offset: 0

Author

Shane Findley, Oct 09 2001

Keywords

Comments

As a corollary to Fermat's little theorem, (2^p - 2)/p is always an integer for p prime. - Alonso del Arte, May 04 2013

Examples

			a(3) = 6, because prime(3) = 5, and (2^5 - 2)/5 = 30/5 = 6.
a(4) = 18, because prime(4) = 7, and (2^7  - 2)/7 = 126/7 = 18.
		

Crossrefs

Cf. A007663, A056743, A225101 (superset).

Programs

  • Magma
    [0] cat [(2^NthPrime(n)-2)/NthPrime(n): n in [1..25]]; // Vincenzo Librandi, Sep 14 2018
  • Maple
    A064535 := proc(n) ( 2^ithprime(n) - 2 )/ithprime(n); end;
  • Mathematica
    Table[(2^Prime[n] - 2)/Prime[n], {n, 50}] (* Alonso del Arte, Apr 28 2013 *)
  • PARI
    { for (n=0, 100, if (n, a=(2^prime(n) - 2)/prime(n), a=0); write("b064535.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
    

Formula

a(n) = A001037(prime(n)) for n >= 1. - Hilko Koning, Sep 10 2018
a(n) = 2*A007663(n) for n > 1. - Jeppe Stig Nielsen, May 16 2021

A064739 Primes p such that Fibonacci(p)-1 is divisible by p.

Original entry on oeis.org

2, 11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491, 499, 509, 521, 541, 569, 571, 599, 601, 619
Offset: 1

Author

Shane Findley and N. J. A. Sloane, Oct 17 2001

Keywords

Crossrefs

{2} union A045468. Complement is A003631 minus {2}.

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[Mod[(Fibonacci[p]-1),p]==0,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
    Select[Prime[Range[150]],Divisible[Fibonacci[#]-1,#]&] (* Harvey P. Dale, Sep 24 2022 *)
  • PARI
    forprime(p=2,700, if((fibonacci(p)-1)%p==0,print1(p,", ")))
    
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if ((fibonacci(p) - 1)%p==0, write("b064739.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 24 2009

Formula

Presumably this consists of 2 together with the primes congruent to +-1 mod 5.

Extensions

More terms from Klaus Brockhaus, Oct 18 2001

A074304 Numbers k such that Lucas(2k)/3 is prime.

Original entry on oeis.org

5, 7, 13, 19, 31, 43, 89, 101, 229, 293, 457, 541, 653, 659, 1553, 2003, 2707, 2749, 7159, 10289, 26267, 59581, 63421, 80911
Offset: 1

Author

Shane Findley, Sep 21 2002

Keywords

Comments

Some of the larger entries may only correspond to probable primes.

Crossrefs

Formula

a(n) = 2*A355980(n) + 1. - Jinyuan Wang, Jul 22 2022

Extensions

More terms found by David Broadhurst, Bouk de Water, and Shane Findley, Oct 31 2002
a(22)-a(24) from Michael S. Branicky, Nov 05 2024

A076697 Indices of record values in A079451, largest prime factor of Lucas numbers A000032.

Original entry on oeis.org

0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 26, 31, 37, 41, 47, 53, 61, 68, 71, 76, 79, 86, 113, 136, 164, 172, 178, 202, 218, 229, 262, 278, 284, 307, 313, 328, 353, 373, 436, 443, 458, 487, 503, 557, 577, 586, 613, 617, 746, 751, 758, 863, 914
Offset: 0

Author

Shane Findley, Oct 25 2002

Keywords

Comments

From M. F. Hasler, Apr 09 2025: (Start)
Original name: Next-to-largest factor of Lucas(n).
The offset 0 is coherent with the fact that the initial term is a starting value rather than a record value.
When A000032(n) is prime (<=> n is in A001606), it necessarily sets a new record for the largest prime factor, since A000032 is increasing from the second term on. Therefore, A001606 is a subsequence. (End)

Crossrefs

Cf. A000042 (Lucas numbers, starting with 2), A079451 (largest prime factor of these).
Cf. A001606 (Indices of prime Lucas numbers: a subsequence).

Programs

  • PARI
    A076697_first(n, m=0)=vector(n,i, i>1 || n=-1; until(mA079451(n++), m), );n) \\ M. F. Hasler, Apr 09 2025
    
  • Python
    def A076697(n):
        try: terms, M = A076697.terms, A076697.M
        except AttributeError: A076697.terms = terms = [0]; A076697.M = M = 2
        while len(terms) <= n: terms.append(next(i for i in range(terms[-1]+1, 1<<59)
            if M < (M:=max(A079451(i),M)))); A076697.M = M
        return terms[n] # M. F. Hasler, Apr 10 2025

Extensions

New definition and data corrected and extended by M. F. Hasler, Apr 09 2025