cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262718 a(n) = (n+1)^n - 2*(n^n) + (n-1)^n.

Original entry on oeis.org

0, 0, 2, 18, 194, 2550, 39962, 730002, 15257090, 359376750, 9424209002, 272385029466, 8604312602690, 294957765448710, 10906288759973882, 432701819402940450, 18336112083960655874, 826578941145375829470, 39497618599385891373002, 1994276034034710498109674
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 28 2015

Keywords

Comments

Obviously, a(n) is always an even number. - Altug Alkan, Sep 28 2015

Crossrefs

Programs

  • Magma
    [(n+1)^n - 2*(n^n) + (n-1)^n: n in [0..30]]; // Vincenzo Librandi, Sep 28 2015
  • Mathematica
    Join[{0}, Table[(n + 1)^n - 2 (n^n) + (n - 1)^n, {n, 30}]] (* Vincenzo Librandi, Sep 28 2015 *)
  • Maxima
    B(x):=-lambert_w(-x);
    makelist(n!*coeff(taylor(diff(B(x),x)*(1-x/B(x))^2,x,0,20),x,n),n,0,10);
    
  • PARI
    a(n) = (n+1)^n - 2*(n^n) + (n-1)^n;
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 28 2015
    

Formula

E.g.f.: A(x) = B'(x)*(1-x/B(x))^2, where B(x) is g.f. of A000169.
a(n) = Sum{k=1..n} (k!*binomial(n-1,k-2)*stirling2(n,k)), n>0, a(0)=0.
a(n) = 2*(A062024(n) - A000312(n)). - Michel Marcus, Sep 28 2015