A262718 a(n) = (n+1)^n - 2*(n^n) + (n-1)^n.
0, 0, 2, 18, 194, 2550, 39962, 730002, 15257090, 359376750, 9424209002, 272385029466, 8604312602690, 294957765448710, 10906288759973882, 432701819402940450, 18336112083960655874, 826578941145375829470, 39497618599385891373002, 1994276034034710498109674
Offset: 0
Programs
-
Magma
[(n+1)^n - 2*(n^n) + (n-1)^n: n in [0..30]]; // Vincenzo Librandi, Sep 28 2015
-
Mathematica
Join[{0}, Table[(n + 1)^n - 2 (n^n) + (n - 1)^n, {n, 30}]] (* Vincenzo Librandi, Sep 28 2015 *)
-
Maxima
B(x):=-lambert_w(-x); makelist(n!*coeff(taylor(diff(B(x),x)*(1-x/B(x))^2,x,0,20),x,n),n,0,10);
-
PARI
a(n) = (n+1)^n - 2*(n^n) + (n-1)^n; vector(30, n, a(n-1)) \\ Altug Alkan, Sep 28 2015
Formula
E.g.f.: A(x) = B'(x)*(1-x/B(x))^2, where B(x) is g.f. of A000169.
a(n) = Sum{k=1..n} (k!*binomial(n-1,k-2)*stirling2(n,k)), n>0, a(0)=0.
Comments