cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262723 Products of three distinct primes that form an arithmetic progression.

Original entry on oeis.org

105, 231, 627, 897, 935, 1581, 1729, 2465, 2967, 4123, 4301, 4715, 5487, 7685, 7881, 9717, 10707, 11339, 14993, 16377, 17353, 20213, 20915, 23779, 25327, 26331, 26765, 29341, 29607, 32021, 33335, 40587, 40807, 42911, 48635, 49321, 54739, 55581, 55637, 59563, 60297, 63017
Offset: 1

Views

Author

Antonio Roldán, Sep 28 2015

Keywords

Comments

This sequence is subsequence of A046389, A088595, A187073, A203614 and A229094.
Obviously, the most repeated prime divisor for values of a(n) is 3. - Altug Alkan, Sep 30 2015
These are numbers 3(2k + 3)(4k + 3) where 2k + 3 and 4k + 3 are prime, together with numbers p(p - 6d)(p + 6d) where p, p - 6d, and p + 6d are prime. - Charles R Greathouse IV, Mar 16 2018

Examples

			627 is in this sequence because 627=3*11*19, and 3, 11, 19 form an arithmetic progression (11-3 = 19-11).
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 64000, And[SquareFreeQ@ #, PrimeOmega@ # == 3, Subtract @@ Differences[First /@ FactorInteger@ #] == 0] &] (* Michael De Vlieger, Sep 30 2015 *)
  • PARI
    for(i=2,10^5,if(issquarefree(i)&&omega(i)==3,f=factor(i);if(f[1, 1]+f[3, 1]==2*f[2,1],print1(i,", "))))
    
  • PARI
    list(lim)=my(v=List()); lim\=1; forstep(d=6,sqrtint(lim\10),6, forprime(p=d+5, solve(x=sqrtn(lim,3),d*sqrtn(lim,3), x^3-d^2*x-lim)+.5, if(isprime(p-d) && isprime(p+d), listput(v, p*(p-d)*(p+d))))); forprime(p=5,(sqrt(24*lim+81)-27)/12+3.5, if(isprime(2*p-3), listput(v,p*(2*p-3)*3))); Set(v) \\ Charles R Greathouse IV, Mar 16 2018

Extensions

New name from Peter Munn, Aug 27 2022